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ON THE CALCULATION OF STEADY BOUNDARY LAYERS FOR

CONTINUOUS SUCTION, WITH DISCONTINUOUSLY

VARIABLE SUCTION VELOCITY _

By Werner Rheinboldt

SUMMARY

Almost all solutions, so far known, of the problem of exact cal-

culation of the velocity distribution in a boundary layer under the

influence of continuous suction pertain to the class of "similar" solu-

tions. One deals_ therefore, with individual particular integrals of

the boundary-layer equations under special boundary conditions. Com-

pilations may be found, for instance, in H. Schlichting [i] or E. J.

Watson [2].

If one disregards the reports using the so-called Pohlhausen methods,

thus not yielding rigorous solutions of the boundary-layer equations,

there exist only very few investigations which deal with the suction

bounda_j layer for arbitrarily prescribable boundary conditions. Here

belongs, for instance, the paper by R. Iglisch _] which treats the onset

of the boundary-layer flow on a flat plate in longitudinal flow with

homogeneous suction. On the other hand, the case of merely piecewise

suction for otherwise impermeable wall - which is of extreme interest

for practical cases - has so far not been rigorously investigated. The

main reason probably is that at the beginning and at the end of every

suction region the value of the v velocity component at the wall becomes

discontinuous so that all customary calculation methods fail there.

In the present report, we shall develop a method, on the example

of a jumplike start of suction for arbitrary external pressure distribu-

tion and arbitrary suction law - a method which permits the exact calcu-

lation of the rapid variations of the velocity distribution (according

"Zur Berechnung stationarer Grenzschichten bei kontinuierlicher

Absaugung mit unstetig veranderlicher Absaugegeschwindigkeit." Inaugural

dissertation for obtaining the degree of Doctor of the Faculty of Natural

Sciences and Mathematics of the Albert-Ludwigs-University at Freiburg

im Breisgau, 1955.
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to boundary-layer theory) near arbitrary flow discontinuities of the
kind mentioned. It is assumedthat one deals with a laminar, two-
dimensional, steady boundary layer of an incompressible fluid. Farther
downstreamwhere the variations of the velocity in the direction of the
main flow are no longer so large, one mayagain use one of the custom-
ary continuation methods.

The method used consists, essentially, in setting up a series expan-
sion for the stream function, after an appropriate transformation of
variables. For larger distances from the wall, an asymptotic expansion
is then connected to that series which is usable only in the proximity
of the wall.

The theory of the method is contained in chapters 2 to 5. In chap-
ter 6, all formulas necessary for the practical application are com-
piled. In chapter 7 there follow a few examples showing the usefulness
of the method.

The present report was suggested by Professor Dr. G_rtler. I want
to express to Professor C_rtler my deep gratitude for many fruitful
discussions and for his great interest in the progress of the work.
Also, I should like to thank Miss Herlinde Kompefor her help in the
performance of the numerical calculations.

i. STATEMENTOF THEPROBLEM

If a fluid with flight friction (laminar) flows around a body, the
flow maybe regarded as frictionless, outside a zone near the wall -
the boundary layer. For calculation of the velocity distribution within
the boundary layer, the Navier-Stokes equations maybe replaced by the
simpler boundary-layer equations, according to Prandtl [4_. For the
case of two-dimensional steady flow of incompressible fluids, these
equations read

u O__uu+ v 0u _ i dp + v 82u

Ox Oy 0 dx

(1)
o___u+ OXv = 0

Ox Oy

where

signifies the arc length of the wall in the direction of
the flow
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Y the perpendicular distance from the wall

u = u(x,y) the velocity component in the x-direction

v = v(x,y) the velocity component in the y-direction

the density (constant)

the kinematic viscosity (constant)

The pressure p(x) can be determined from the frictionless outer flow

to be regarded as known. I If u_(x) denotes the longitudinal velocity

at the edge of the boundary layer, there applies in an approximation

according to boundary-layer theory

1 dp : (2)
pdx dx

If the boundary layer is now sucked off entirely or partly through

the wall of the body, the boundary-layer approximations performed in the

Navier-Stokes equations are known to remain Justified as long as the ratio

of the speed of suction to the outer flow u_(x) is sufficiently small.

If, however, this ratio becomes too large, a dependence of the bo'_ndary-

layer pressure p on the transverse coordinate y appears. This is

the so-called sink effect. For what follows, we shall al_ays assume the

speed of suction to be so small that the boundary-layer equations (i)

and the pressure equation (2) remain valid.

Various boundary conditions are now added to the boundary-layer

equations. Due to the adherence of the fluid to the wall, there is,

first of all

u(x,o) : o (3)

Furthermore, the transition of the boundary-layer flow u(x,y) to the

outer flow u_(x) is regulated by the requirement

lim u(x,y) = u_o(x) (4)
y _

Finally, for continuous suction

v(x,o): -Vo(X) (5)

iIn practice, this is done mostly by measurement of the pressure.



is valid where Vo(X) represents the suction distribution (Vo(X) > 0
suction, v0(x) < 0 blowing off). 2 Especially for Vo(X) m O, thus

v(x,o): 0 (6)

(5) gives the case of the impermeable wall.

comprehensive report of H. G. Lew - R. D. Mathieu [5],As shown in the

in almost all (rigorous) theoretical investigations concerning continu-

ous boundary-layer suction up till now the restrictive assumption was

made that suction prevails everywhere along the body in the flow, and

that the suction distribution v0(x) is continuous. On the other hand,

the more comprehensive case is of considerably higher practical interest

where the wall is piecewise alternately impermeable as well as porous;

thus the function Vo(X) identically disappears within certain x -inter-

vals and becomes discontinuous at the beginning and end of every region

of suction in general. For instance, most experimental reports dealing

with this field use such more general suction distributions. Compare

for instance, the reports of Sir Jones [6], W. Pfenninger [7], and A. v.
Doenhoff - L. K. Loftin [87 .

In the present report we shall treat the exact calculation of the

boundary-layer flow for such suction distributions which are discontinu-

ous in places. We may limit ourselves to the special case that the wall,

starting from its beginning (x = 0) is impermeable at first, until the

continuous suction begins abruptly at an arbitrary point x = x0 > 0.

Accordingly, we have to use, in addition to (3) and (4), as a third

boundary condition

0 for 0 < x < x0
v(x,o) : " (7)

l -v0(x) for x0 S x (Vo(X O) / O)

We shall see later that, with the aid of the method develo)ed for the

solution of this case, the problem of an abrupt stopping of suction also

can be solved, likewise any arbitrary discontinuous variation of the

suction distribution Vo(X) , so that our above restriction to the begin-

ning of suction is by no means essential.

It is well known that the three boundary conditions (3), (4), and

(7) are not sufficient to determine the boundary-layer flow" for all

2The boundary conditions (3) and (5) together correspond to a per-

pendicular continuous suction which can be realized technically with the

aid of porous walls, made of sintered bronze, for instance.
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x _= 0 completely. For this, one rather needs, corresponding to the

parabolic character of the boundary-layer equations, in addition, an

initial condition for u(O,y) in x = O.

In the interval 0 _ x _ Xo, our initial boundary-value problem

defined by the equations (i), (2), and the secondary conditions (3), (4),

(7) as well as by the initial condition u(O,y) represents precisely

the usual boundary-layer problem without suction. Thus, we may assume

directly, with a view to the aim of our statement of the problem, that

in this range the desired solution has already been calculated with the

aid of the known methods_ for instance, the Blasius series or one of

the customary continuation methods. Then we know also, at the point

x = Xo, the velocity distribution U(xo,Y ) = _(y). This function _(y)

represents, because of the boundary condition (7), the end profile of

the boundary layer without suction and contains the entire previous

history of the flow up to the point x = x O. For the further calcula-

tion of the boundary layer in the region x _ Xo, one may now use,

instead of the initial condition for u(O,y), simply

as a new initial condition.

With the aid of the entrance profile _(y), there follows from the

boundary-layer equations (i) and (2)

u ux+ v uy-- -u Vy+ v uy = -u2 u

t hus

V(Xo,y) : _(y) = __]Y
y _"(y) u_(xO)u_' (x o )

(_(y))2_U

dy (lO)

and, as may be easily confirmed

v(_,O) = _(0) = 0 (ll)

is valid. The discontinuity caused by the jump-type start of suction

lies therefore at the point x = Xo, y = 0 at the transition from the

boundary v values v(x,O) = -Vo(X) to y = 0 and of the initial

v values V(xo,Y ) = _(y) to x = xO.
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We want to remark here briefly that the initial condition (8) and

the outer boundary condition (4) are by no means independent of one

another. As the author has sho_ in another report [9], there applies

for every two-dimensional_ steady, and incompre%sible boundary-layer

problem the following theorem, independently of the form of the inner

boundary conditions under certain assumptions not restrictive for the

present case. If at any point x = xI an initial condition fitting

the problem U(Xl,Y) = _(y) has been set up and the occurring entrance

profile _(y) correctly adjoins the outer flow u_(x) - that is,

lim _(y) = u_(xl) - the outer boundary condition (4) has already been

y _

automatically satisfied in an interval xI $ x $ x2.

It is expedient for what follows to write the boundary-layer equa-

tions in dimensionless form. If L signifies a characteristic length,

U a characteristic velocity, and Re - UL the pertaining Reynolds num-
v

ber, we put

X_ X U@ U U_= -- U_ _ _*

L U U U

V_e p* Py* = _ _ v* = _V t/R-e v0* =u U ocP

(12)

Since only this coordinate system is being used below, up to chapter 7,

we may omit there the asterisks without having to be afraid of confusion.

The boundary-layer equations (I), (2) read, with use of these new

quantities

'D

u O__u+ v 0_uu: u_u_' + 0=--_u

Ox _y _y2
(l})

and the boundary conditions become

u(x,O): o v(x,o): -Vo(X) (x > xO) (14a)

lim u(x,y) : u_(x)

y -_m
(14b)

u(xo,y) : _(y) (14o)



In the present report, we intend to develop a method which permits

rigorous calculation of the rapid variations in the velocity distribu-

tion in the boundary layer, in the proximity of the flow discontinuity.

Farther downstream from the point x = Xo, where the changes in the veloc-

ity distribution are no longer as large, we may use again one of the cus-

tomary step-by-step methods like, for instance, the difference method

developed by H. G_rtler [14 . A slight improvement of this difference

method by G_rtler, which proved very good in such calculations with suc-

tion, is described in the appendix.

Finally, it must be remarked that the jump of the boundary v-values

at the point x = Xo, y = 0 is propagated into the flow along the char-

acteristics x = Xo, y > 0 as a discontinuity of certain higher deriva-

tives of the solution. We shall not discuss this fact in more detail

since it is not necessary for our further considerations. Its qualita-

tive correctness is confirmed_ for instance, by the results of our exam-

ples. (Cf., for instance, also Courant-Hilbert [i_, vol. II, p. 299.)

The real physical flow has, of course, no such discontinuity on x = xO.

One deals here solely with a local degeneration phenomenon of mathemati-

cal type which is caused by the boundary-layer approximations. Actu-

ally - in agreement with the elliptical character of the complete Navier-

Stokes equations - no discontinuous jump takes place on x = x0 but a

continuous, though rapid, transition.

2. STATEMENT OF THE NEW METHOD OF SOLUTION

For the initial boundary-value problem defined by the equations (13)

and (14), we s_ll assume below that the three given functions _(y),

u_(x), and Vo(X) are analytical, thus may be represented by uniformly

convergent power series

_(y) = _ anyn

n=l

3

(15)

u(x) : un( - xo)n

n:O

(16)

Vo(X): 7, Vn(X- xo)n (vo o) (17)

n--O

3Note that _(0) : O, because of u(x,O) = O.
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R. Iglisch [3] eliminated a difficulty in the calculation of the

approach flow - similar to the discontinuity of the boundary v-vlaues

at the point x = Xo, y = 0 (cf. chapter i) - at the leading edge of

the plane plate in longitudinal flow with homogeneous suction. He maps,

essentially, the straight line x = O, thus the carrier of the flow

discontinuity, into the infinitely distant point _ = O, _ = % with
-- __ y

the aid of a coordinate transformation of the form x = x, y = -_-.
dx

It suggests the use of a similar procedure here. However, we shall
see that in our case a transformation of the s_ne kind is not suffi-

cient, and we use therefore directly the more general transformation

o= @x- _ I

kY
: (18)

_ - x0 [

J_(×,y): _-i f(_,_)

which was applied first by S. Goldstein [12] in the calculation of the

wake behind the plane plate. N is an integer still to be defined, and

9(x,y) is the stream function of our problem for which, therefore

_y(×,y) = u(x,y) _x(X,y) = -v(x,y) (19)

is valid. One then obtains

_N-2
u - f (20)

N

and, as can be easily checked, the differential equations (15) are trans-
fo_ned into

N3°4-Nu_u_' + fTTT - (N - 2)f_ 2 + (N - l)f fT_ - _fTf_c + cfdfTT = 0

(2l)

If we introduce the abbreviation

Co(X) = Vo(X) dx : Vn-i (x - Xo )n
n

n=l

(22)
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as a dimensionless mass coefficient, 4

new boundary conditions

I-N

and

we obtain from (14a) and (14b) as

Co(oN) = 7, Vn Nn+l 5-- _ (25a)
n+ i

n--O

_N-2N fT( _' _) = u_(o N) = _. un_Nn

n--O

(23b)

Since in the transformation (18) the semi-infinite line

is transformed into the one (infinitely distant) point

the initial condition (14c), the entrance profile _(y)

important for our problem, is at first completely lost.

x=x0, y>0

_ = O_ T = oo,
which is so

We shall show first that for N : 2, that is, for the case of the

transformation used by Iglisch, there results no possibility of taking

the entrance profile again into consideration. For N = 2, the differ-

ential equation (21) assumes the form

$C2UmUm' + fTTT + f fTT - cfTfTC + ofofTT = 0

and the boundary conditions (23a, 23b) become

fT(0",0) : 0 f(0",0) = C0(0"2)0" - 7,, n +lvn o"2n+l (24a)

n:0

fT(d,_) : 2u (d 2) = 2 _,, Un o2n

n=O

(24b)

4Thus, the suction quantity in the interval from x0 to x, when

b is the width of the suction region traversed by the flo_, amounts in

our dimensionless coordinates to

Q = bCo(_)

5Here we put tacitly f(0,0) = 0 since an additive constant is

unessential in the stream function.
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In spite of the lacking initial condition, the solution f(o,_) of
(24a/b) is fully determined in the neighborhood of o = 0. If one states
for it a power-series expression

(25)

there result for the coefficients fn(T) in every case differential

equations of the third order with boundary conditions for f(0), f'(0),

and for f'(_). It can be proved - which we shall not do, however -

that thereby all fn(T) are completely determined. For f0(T), for

instance, the differential equation reads

f0" + f0f0 ''= 0

and the boundary conditions have the form

I

fo (°) : fo (o) : o fo'(_) = const

fo(T) is therefore exactly equal to Blasius' plate profile. Thus, the

lacking initial condition must be necessarily

f(o,T)= fo( )

and one can now calculate f(o,T) immediately, for instance - as Iglisch

did - with the aid of a numerical step-by-step method instead of by means

of the series (25). However, one understands at once that the solution

u(x,y), v(x,y) of (13) obtained from this f(o,T) by the inverse trans-

formation (18), satisfies only a constant entrance profile u(0,y) = const.

Thereby, we have merely regained Iglisch's solution, however, for arbi-

trary external pressure distribution and without the auxiliary transfor-

mations additionally used by Iglisch.

We now set N = 3. Then the differential equation (21) reads

2 + 2f f - of f + ofofTT = 0 (26)27_U_U= ' + fTTT - fT TT T TO

and the boundary conditions (23 a/b) are transformed into

oo

f'r(°'O) = 0 f(o,O) = o -2 CO(O3) = Z n +vnl °3n+l (27a)

n=O
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_fT(S, °°) = 3Uoo(_ 3) = 3 _ Un_3n

n=O

(27"0)

Here, f(_,T) is no longer fully determined in the neighborhood of

= 0. If (in order to understand this) one again sets up a power-

series expression of the form (25), there results, for instance, for

f0(T) the differential equation

f0'" + f0f0 '' - f0 '2 = 0

with the boundary conditions

f0(o)= ro'(O)= 0

The outer boundary condition (27b), in contrast, loses its significance

and must be cancelled. Then, f0(T) is no longer uniquely determined,

however. The same is true for the other coefficients fn(T). Every-

time, one boundary condition is lacking in their differential equations

and we are free to choose it appropriately. Of course, we shall attempt,

through this choice, to take the entrance profile _(Yl into account,

after all, as S. Goldstein did for the wake behind the plane plate. For
Y

this purpose, we put temporarily _ = _7' thus pass over to a T,

y-coordinate system. Then there follows from (20) and (25)

fn_l (T)
u = _ yn

n=iZ'3n+l Tn

Since for fixed y the limiting process x-_0 in the T, y-coordinate

system signifies T-_, (14c) and (15) are transformed into

fn-l(T)lim ___ yn = anyn

T _ oo 3n+l Tn
n=l n=l

this results in the case of uniform convergence of the series (which is

to be assumed)

fn_l (T) n+l
lim = 3 an (n=l,2, ...) (28)

T --'> oo 1 -rl
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This relation may be used directly as outer boundary conditiou for the

fn( )

The elimination of the former outer boundary condition u(x,_) = u_(x)

is unimportant for the further calculation. As has already been stated

in section i, this boundary condition is, under certain assumptions,

always automatically satisfied in an interval x0 _ x _ Xl, if only the

flow corresponds to the entrance profile _(y) - which is attained by

(28) - and if

lim _(y) = u_(x O) (29)

y_

is valid for this entrance profile - and this, of course, must be the

case, if only because of the previous history of the flow. We shall

discuss this point in more detail in section 5.

In order to find the differential equations for the coefficients

fn(_) individually, we have to enter into the differential equation (26)

with the expressions (16) and (25). If we write abbreviately

n

Pn = I (m + l)Um+lUn_ m

m=0

(30)

thus

there results after comparison of the coefficients

I!

fo'" + 2fof0 - f0'2 = 0

TI| !! !

fn + 2fof 0 - (n + 2)f0'f n + (n + 2)f0 TM*n = Fn(T)

with

n-i

F (T) =n I

m=l

27pj

_m + l)fm'f'n_ m - (m + 2)f f" _ -
m n-m_ 0L

(31)

(n=l,2,...) I
.J

(32)

for n = 3J + i

otherwise

(33)
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This infinite system of ordinary differential equations may be solved

by recurrence methods.

As boundary conditions, we obtain from (27a) and (28) for n = O,

i, 2,

i j for n = 3J + i
fn(O) : (34a)

otherwise

fn'(O) = 0 (34b)

fn'(T) 3n+2 (34c)
lim = an+ I

T --_oo Tn+l

The first equation (32) may be integrated immediately. One finds

as the solution to the boundary conditions (34)

fo(_) = _9aj2 (35)2

If one introduces this into the other equations (32), it is expedient

to choose at the same time as a new variable

Thus, we obtain for n = i, 2

equations

with

Gn(G) :

fn(T) _ gn(_) (n=l,2,...) (36)

the sequence of linear differential

gn'" + q-2_n" - (n + 2)_ gn'

n-i

i Z
m=l

+ (n + 2)g n : Gn(_) (37)

,, ' Iom + l)gm gn-m - (m + )gmgn_ -

[

for n = 3J + i

otherwise

(38)
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and the boundary conditions

gn(°)= I

for n = 3J + i

otherwise

gn'(O) = 0

(39a)

(39b)

lim gn'(_)

3. ON THE SOLUTIONS OF THE HOMOGENEOUS EQUATIONS (37)

(59c)

g

It is important for what follows, to know the full diversity of

solutions of the homogeneous equations

Ill 2 II !

gn + _ gn - _(n + 2)g n + (n + 2)g n = 0 (n=l,2,...) (40)

pertaining to the differential equations (37), and also to be able to

master the asymptotic behavior of these solutions for large _.

One sees immediately that gn = _ always must be a solution of (40).

Thus, (40) may be reduced, by the expression

gn = q/gn(_ ) d_

to the differential equation of the second order

g--n"(B) + (3 + _2)gn'(_) - n B2_n(_) = 0 (41)

for a new desired function gn(_). Equation (41), in turn, is transformed

into the differential equation of the confluent hypergeometrieal functions

w"(_) + (b - _)w'(_) -a w(_) = 0 (42)

if one puts

_3 n _ 5

_ =-T' W = g--n and a =-y, b- y
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5 the
If, therefore, w(_) is a solution of (42) with a = _n b = 7,

J

WI-_) represents a solution of (41).equation =

The differential equation (42) is known to have the two linearly

independent solutions.

Wl(_) 1Fl(a,b,_) _- _, (a)n in= "(b)n n'.
n=O

w2(_) = _l-blFl(a- b + l; 2 - b; _)

where for the sake of brevity we wrote

(a)o : !. Thereby

(a)n = a(a + 1) (a + n - i),

: 1F1 - 7,7' -

_( ):_ _ 3 '

f'-2[1 ( n + 2 _, - _'_-) - _ dl=I+_ FI 5 '

are two solutions of (40). These solutions are both fully analytical

functions of _. In hn(q) this can be seen immediately since

iFl(a,b,_) is known to have this property. For kn(_) it follows from

the second representation since here also the integrand is fully analyt-

ical. Moreover, _, hn(_) , kn(_) , the three solutions obtained, are

linearly independent of (40). This results immediately from the fact

that the power-series expansion of hn(_) has the form

n(n- 3) .-. (n- 3(m- 1)) ,i]3_2
k,(_) z 5"8"ii (5 + 3(m 1)) m ,"'" - 3 m.(3m + i)

m=O

(44)
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thus begins with

easily be checked.

2
whereas that of kn(N].. starts with I, as may

In order to find the asymptotic expansions of the functions hn(_)

and kn(_) , one will first try to introduce for IFI the well-known

asymptotic expansion into (43) and then to integrate. In this manner,

however, the constant terms of the desired expansions remain undeter-

mined. Thus, we must choose another procedtm_e. For this purpose, we

shall represent the functions hn(_) and kn(_) first by certain inte-

grals of the Mellin type which - as we shall see - may then be evaluated
as desired. 6

As one may confirm, for instance, from the formulas given by

E. Whittaker and G. N. Watson [13], the representation

1Fl(a,b,_) r(b) I [+_i r(z)r(a- z) _-z
: r(a)2_i _ -_i r(b - z) dz

(45)

is valid for the confluent hypergeometrical function for R_ > 0 and

arbitrary a, b which are not negative integers. The path of integra-

tion must separate the two pole chains stemming from P(z) and P(a - z);
then the interval also converges uniformly. If one introduces this into

(43) and interchanges the sequence of the integrations which is evidently

permissible, one obtains the representations

hn(_) =

-z(3 -3z + l)

r(½) +_i r(z)r(- n+ 2
kn(n) = n -]-- .f 2

F(_ n+ 2)2_i5 _-_i F(_ z)

dz

z) _ -3z+l

-Z

3 (-3z+ i)

dz

(46)

In order to derive from this the desired asymptotic expansions, the

integrals are first calculated over a path W situated entirely in a

finite domain. Their values can then be estimated when W makes piece-

wise the transition to infinity. The path W is to have, in the plane

of z = _ + i¢, the form drawn in the figure. * denotes poles of F(z),

(n)0 poles of P - _ - z or P 3 z , respectively. The point M

6
This method is frequently used in the theory of the hypergeometri-

cal functions.
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is to have for the first integral the value

second the value n + 2 + m+ X(m = 2, 3,
3

number X between zero and one.

n
- - + m + X and for the

3

.), with a suitable real

+i8

v r_.._w _

-i@

,0

W

v 4_

The integrals (46), extended over W, may be immediately calculated

according to the residue theorem: Inside W both integrands for B_ > 0

are certainly regular, except for the poles in

n n n 1
.... + i, ..., --- + m and - (m:2,3,..; n=l,2,..)
3' 3 3 5

or

n+2 n+ 2 n+2 i
, + i, ..._ + m and ---

3 3 3 3

respectively.

For n _ 3J - i (j natural number), the pole at 1/3 and -I/3 is

different from the others and, like them, of the first order. Thus,
one obtains in this case according to the residue theorem

2,,i 3-z(-3z + i)

dz =

( n _, / n+2_

31

or

r'!' r(z)r(--_-_- z) -Sz+l

p/ n+ 21_i

dz =
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In the case n--3j- I, the pole at _n +j3 (or n + 2 +j)3

coincides with the pole at I/3 (or -1/3). Thereby, the term with v = j

disappears in (47a) and (4_), and the additional term changes in (47a)
into

__ n ) -3z+lr r(_,)r(-7 - z

= En --+ _(j + i) - _ -
3

and in (48a) correspondingly into

(47b)

-_}I/}P(_(!)(-II_(7- j + I) _ n h2 + _(j + I) -

(48b)

here denotes the logarithmical derivative of the gamma function.

For abbreviation, we shall designate the expansion on the right side

of (47a) _hich was broken off at v = m by _n,m(_) and on the right

side of (48a) by _,m(_) ; the changes (47b) and (48b) will, of course,

be taken into consideration for n = 3J - i. Our assertion then is that
~ (
hn, _ h) and _n,_(_) in a sector of the form

- c (e > 0 small)_R_> o larg_I< 6 - -

are precisely the desired asymptotic expansions of hn(_) and kn(h)

for h _ _. Since the proof for this is completely analogous for both

functions, we limit ourselves to carrying it out for hn(_) only.

First, one may split up the integral on the left side of (47a) in

the following manner:

(I)

-9 m+X+ie F-_ +m+X+i@ - F-_ +m+X-i@

i8 d_ 9m+X_i8 _ -i@

(II) (IIl) (IV)

(49)
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We shall show that the two integrals (II) and (IV) for 8-_ disappear

for constant m and any _l(from the sector _. If we denote, abbre-viately, the integrand by z,_), thus

r(z)r( _n z) n-3z+l
I(z,_) =

I +
we obtain, with use of Stirling's formula

.4
o n 5)ln(_z) (-3z+l)ln _ _(z)(z-½)in z-z (-_- -z e

l(z,_) = 2_ e e e 3 (-3z + i) e

with lim _(z) = O, therefore

azl

l(z_) = 2_ e (_-1)lnlz' -_ arg Ze__e (-_-3_)inizl X

(-3_+l)in lhI+3¢ arg e_ in 3 e_(z)

I-3z + 11

For the logarithm, one must always take the main value, that is,

larg z I < _ and _ arg z is always positive. Thus, one obtains

(50)

n 5 1

:3{+1

-{(1- in 3+3 lnln! )+ inlTll+_R_(z)
e x

-l_l(larg zl-+3 arg _)
e

with the upper sign being valid for @ _ O, the lower for _ > O. Because

of larg z I -_ _ for @ _ _ on the integration sections of the integrals

(II) and (IV) and because of larg _I < _ - i, one can certainly find a

@0 > O, for any constant _6_ for given 5 > O, in such a manner that

0 < 25 < larg zl + 3 arg
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for all @> GO and every sign is satisfied. Furthermore, there applies
in the entire strip

for constant

0 < _ < - n + m + X, @ arbitrary
3

Be_ evidently the estimates

2_

3_+i

-_(i- in 3+3 in q)+ inIBl+RB(z)
e

< CI

and

n _ 1 n 5 i
_-_-3 2 3 5 2

Izl < % I_1

Thereby, one obtains

II(z,h)l < C1 X c21el e

and, if 00 is chosen so large that

n 5 i

3 3 2 51_1I_1 < e

finally

-51_1
II(_,_)t < constXe

n

For 0 < { < - _ + m + X and constant _e_, the integrals (If) and (IV)

thus converge toward zero, over the horizontal sections of the path W
for @ _ _.

Thereby, (49) becomes for e _

+i_ n

_,-ioo n+ m+X-ioo
3

or, if the integral values are substituted

O
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l _(_,n)dz (_l)
_n_ m(_) = hn(N) - _ "7-n_ 2_i n+

L3J 3

In order to show that h_n,_(N) is, for _e_, the asymptotic expansion

of hn(N) for N-_ _, we must prove that for every constant m

is valid.

lim _(N)- _m(N)]q-n+3m-2 = 0
(52)

For this, we must estimate - because of (51) - the integral

tkn (N) _ _n,m (_)_ _]-n+3m-2

- _ + m+X+i_

-n+3m-1 F(_) J_P_+m+×-i_ dz,n) dz

(53)

for constant m and _ _ _ (N¢_). First, if we write for abbreviation

M = _n+ m+ X
3

we obtain

i _ _(=,_) d= < ! _(I_ + i,_,a) d_
2-_ _ M-ioo = 2_ oo

(74)

From (50) then follows

M-_ -_(arg(M+i_)-3 arg N)eR_(M+ig)

II(M + ig,N) I = H(N)e e

I-3(M+ i_)+iI

with

H(_)= _ e-M(1-:L_3)1nl-3_-
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H(_) may be put ahead of the integral, the rest may be estimated, in

analogy to the former procedure, by

I(M + i¢,_)I <__H(_)CIM + i¢ I
M_[_ 3el n+ 5 _i_i(larg(M+i_)i+3 arg _)

where C is a constant, and the upper sign applies again for _ < 0,

lower for _ > O. We now split up the integral (54) into

d@ +
d

0

(55)

with

i n+5
M-_--_- _l_l(larg(Ymi_l ±3 arg _)

Again because of larg _} < _ - e and larg (M + i_)l _ _, as above,6 -

one must find, for _ _ = for given 8 > O, a 80 > 0 in such a manner

that

is valid for all

same manner

0 < 28 < larg (M + i¢) ± 3 arg

l@I > @0 and for each sign. Thereby follows in the

I*(@,_) < Ce -bl_l for I@I > eO, m constant, Ne_

that is, the two improper integrals on the right side of (55) are cer-

tainly limited. This applies, of course, also for the proper integral

and we obtain therefore from (53) altogether

lhn(.Q ) _ _n,m(.Q) I i_]i-n+3m-2 <__const IT]I-n+3m-i H(_l ) <__const INI-3X
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Thereby (52) is actually satisfied for every constant m and I_I _ _

with _c_, that is, as asserted before, hn,_(h) is in _ the asymp-

totic expansion of hn(_) for _ _ _.

In exactly he same manner one proves that _n,_(_) likewise repre-

sents the asymptotic expansion of kn(_) for _ _ _ with qc_.

For later, we note that

as can be easily checked. This means that there exist solutions of (40)

which for q _ _ are asymptotically zero.

4. SOLUTION OF THE INHOMOGENEOUS EQUATIONS FOR THE

FIRST COEFFICIENTS fn(T)

(a) Function fl(T)

With use of the variables _ = 9_IT , there applies, according

to (37) and (39), for the coefficient fl(T) = gl(_) the differential

equation

,,, PO

gl + _2gl" - 3_ gl' + 391 ---} a-_ (57)

under the boundary conditions

gl(O) : v0 (> 0), gl' (0) : O, lim gl'(_) a2
n n2 = 3 (58)

A solution of the inhomogeneous equation (57) which satisfies the

first two boundary conditions (58) may be found with a polynomial expres-

sion of the third order to be
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alVo + PO _3
Vo 2a I

Thus, the most general solution of (57) which satisfies those two

boundary conditions reads, according to section 3

gl(_)= vo alVo + PO _3 + 51hl(_ )

2a I

(59)

The constant 51 is to be determined by the third boundary condi-

tion (58). According to (47a), the asymptotic expansion of hl(_)

reads

3_7 +__ 33jY
(60)

thus for _ _

33#YalVo + P I i_ P(_)
_3+_ _ _(_)__ _ _

2aI 7 3_
(61)

gl'(_)
is valid. To determine 51, we need the asymptotic expansio_ of 2 "

According to a well-known theorem, 7 the formally differentiated asymp-

totic expansion of gi(B) represents the asymptotic expansion of gl'(9)

if gi'(B) altogether possesses such an expansion. This is the case,

however, for from (59) there results first

and

alVo + PO 2

gi'(_) = -9 2a i _ + 51hl'(B)

i 5 d_ + - -
hl'(_) : IFI -7' Y' - _IFI 7' 7'

7See, for instance, K. Knopp [14_ or E. Borel [15_.
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certainly has an asymptotic expansion, according to section 3. There-

fore, it is clear that

and thus

i 2\

gl' (_)~3 1 r(-_Y'

\

alv0 + PO_ i
2 + h y _ r/!_

2aI _ \3J

2 _3 i

33#Y

alVo+ PO]+ _ 51 i _ _ll',
2al / I]2 _ _ 1_/J

is valid. If we let N approach infinity _ _ m, we obtain, using the

third boundary condition (58)

aJo+i 2al = 3 al

or

with

51=
3_ 12a2 + P0 (62)

2a2 + PO
51" = + v0

a I

For the numerical computation of gl(N) , we need merely tabulate

the function hl(N). We shall try to attain this, first, by numerical

integration of the differential equation

hi'" + _2hl" - 3qh I' + 3h I = 0
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under the initial conditions

T!

hi(O)--hl'(O):0, hI (0): 2

However, for this differential equation continuation methods like, for

instance, those of Adams or Runge-Kutta are, unfortunately, unstable.

The reason lies in the coefficients increasing with _ which, moreover,

have different signs. In order not to lose too much accuracy, one may

therefore work only a short piece with this method, that is, one must

use as far as possible the power series (44), thus

3m+2

hl(n) = 2 _, ('l) m+l

m=O (3m - l)(3m + l)(3m + 2)3mm_

(65)

We calculated, with the aid of (63) the function

- I hl(n)hl(_):

and its first two derivatives in the interval 0 <= q <= 2.5, with toler-

able (calculating) time. For 2.5 _ _ _ 3.0, the method of Adams was

used, and at q = 3.0 there appeared, up to 5 digits after the decimal

point, agreement with the values of the expansion (60). The tabulation

of _i'(_) for 0 _ _ $ 6.0 is given in the appendix.

For later purposes we need, furthermore, the asymptotic expansion

of the function fl(T). It results immediately from (61) as

fl(T) _ B1373 + BIIT + BI0
(64)

with

BI3 : 9a 2 BII = BI0 =
2a 2 + PQ

aI

For the coefficient

the differential equation

(b) Function

g2(_): f2(_)

f2(_)

there follows from (37) and (39)
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g2'" + _292" - _g2' + _g2- 1 (_Sglgl,,+ 2g1,2) (65)

with the boundary conditions

g2(O) : g2'(O) = O, lim
g2' (_) _ 3,_ 3a3

rl3 a14/3

(66)

In order to make the functions to be tabulated for the calculation

of g2(_) independent of the data of the special problem, we split up

the right side of (65) as follows:

i (_3glgl,, + ,2) _ 812 -3hlhl" + 2hl '2) +

._ Bl alvo : PO TI3 _ 2h1,_12 + 3h I _

al_/3

al_O + PO81 ° + 3 vo (67)
I/3 4/3

al a I

and consider, correspondingly, the differential equations

,,, 2 ,, , ,, 2h I ,271 + _ 71 - 4_71 + 4T 1 = -3hlh I + (68a)

hl"
'" ' - TI3 - 2h 1 T13 + 3hit I (681o)72 + T1272" - 4_72 + 472 2

T rl

,,, 2_ ,, _ 4_73 + 47373 + q 73 = hI
(68c)

III -- 2^. ,,
74 + n Z4 - 4_74 + 474 = (6e_l)
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in every case under the initial conditions

11

_v(o) = 7_'(o) : _ (o) = o (v = 1,2,3,4) (69)

For the equation (68d) there results as the solution of this initial-

value problem

4

_4(_.. _-_ (7o)24

Let 71 = Yl (N)' 72 = 72(_)' 73 = 73(N) be the desired solutions of

the other equations. Then

512 alv0 + P0

_2(_) : _ 7_(_) + x_s1 4/3 _2(_) -
a I

4

73(_) + 3 _/7 alvO + PO

a14/3 24

(71)

is evidently a solution of (65) with g2(O) = g--2'(O) = g2"(O) : 0, and

consequently

g2(n) = _2(n ) + 52h2(n) (72)

represents the most general solution of (65) which satisfies the first

two boundary conditions.

In order to determine 52, we must again investigate the asymptotic

behavior of the solution g2(_). First, there is, according to (47a),

(47b) for n _ _
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h2(-q) ,-. =
4

+

4._I"(-_) _ln 3 + _(2)- _'(-_)- _(_)-_'rl +*'1})
_ in_+

4_/3-I"(_) _,, _.4 ... (3n- 5)] _-1)2.5 ... (3n- 7_

31"(_) n=2 n_3n(1 - n) Tl3n-4

(73)

It is therefore necessary to obtain information on the asymptotic

behavior of _i(_), 72(_), 73(_). For this we use an approach from

Poincar_'s theory of asymptotic series. 8 If one replaces in the three

differential equations (68a-68c) the right sides every time by their

asymptotic expansions, there originate the pertaining so-called asymp-

totic differential equations

" --
_i'" + _2_i" - 4q i i

2 F(l\ FIF(_)12

2

(74a)

T2'" + h F2 - 4h72 + 472 I" _2 _
( 74b )

"" ,,, 2"' " _ 4.rl_' 3 ..., = 2r_
_'3 + _ _3 + 4Y3 x_ _

(74c)

One understands now immediately that the asymptotic expansion of a

solution of (68) 9 must formally satisfy the corresponding asymptotic

8See, for instance, E. Borel [15].

As far as such an expansion exists at all} however, we shall always

make this assumotion.
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equation (74) •

particular integral, namely

I-_] _

3 E_)_7)_ ÷-_

_
72: 12_7 -_

For each of these equations one can immediately give a

(75a)

(75b)

rf_2_
F3 = _ ¢ (75c)

Hence, we obtain the complete solutions of (74) by addition of an arbi-

trary linear combination of the three solutions h2(_) , k2(_) , _ of

the pertaining homogeneous equation. These linear combinations are,

because of (56), for _ _ _ asymptotically equal _i_2,_(_ ) + _2_ plus

a zero expansion

--(Fo _]- _c3e _ + -- + +
7 ""

Thus, we have obtained in

_.v(_) + _lv_2,oo(1]) + _2v TI + _3ve-TI _,, _ra_
m--O_

(v=1,2,3) (76)

the most general asymptotic expansions which satisfy the equation (74a-74e).

Therefore, especially the asymptotic expansions of our solutions 71 ,

72, 73 of (68/69) also must have this form. Let there be, for instance

7v(_) ,,,Fv(,l) + o1,,_2,_(_) + c2,,,1+ e3,e-'i (v=1,2,3) (77)
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If we succeed in numerically calculating the appearing constants Clw'
there follows from (75) and (73) immediately

lim -_ - _ + Cll

lim _ i + (78)

limh (rl) 2
= + c13 3

_ ¢ _ _(_)

Thus, with consideration of (71), (73), and the outer boundary condi-

tion (66), we obtain from (72) a simple qualifying equation for 52 the

solution of which reads

1 PO C_

_ 51"v0c13
2rf-2_

(79)

Finally, we have to determine the constants Clw. For this purpose,

we must first calculate the functions 7v(_) up to sufficiently large q.

As for hl(_) , here again the numerical instability of the differential

equations requires working with the power series, as far as time required

for calculation permits. For the functions we tabulated

- = ! h2,(,_) _l'(n) -- 1 (,1), - ('1) = 572(,1), 7_'(,1) = l ,h2'('_) 2 ' 7 _'l' _'2' 7 _'3 ('1)
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we used the series in all cases for 0 _ _ _ 2.5 and passed over to

Adams' method only from _ = 2.5 onward. For h%'(_) there applies,

according to (44)

For the

_,(_) = _, (_l)W+l 1.4.7 ... (3v - 5) _3v+l
5"8-Ii ... (3v - l) (3v + l)v.'3 v (80)

v=O

_v'(_ ) there results from the differential equations

-- _ E(1) 3v+l, -- Z (2) 3v+2 -- _ (3) 3v+271' 3v+l " 72' = E3v+2 _ ; 73' = E3v+2 _

v=l v=2 v=O

(81)

where the first coefficients E have the values indicated in the fol-

lowing table.

i. Coefficients of the power series of _I'(_).-

g

3v + i E3v+l 3v + i E3w+l

i

4

7
i0

13
16

19
22

25
28

3l
34

37

0

+ 83 333 353 - 9

- 67 460 317 -lO

+ 48 941 799 -ll

- 29 674 544 -12

+ 15 232 538 -13

- 67 289 106 -15

+ 25 916 779 -16

- 87 786 347 -18

+ 26 232 355 -19

- 68 793 432 -21

+ 15 489 412 -22

- 27 947 829 -24

4O

43
46

49

52

55

58
61

64

67

7o

73

+ 29 684 711

+ 45 458 O7O

- 42 030 747
+ i0 678 059

- 45 994 712

+ 14 900 549

- 42 190 905
+ i0 986 648

- 26 944 258

+ 63 044 703

- 14 189 493
+ 30 826 575

-26

-28

-30

-30

-32

-33

-35

-36

-38
-40

-41

-43

Here, 83 333 333 -9 signifies abbreviately: 85 333 333 10 -9,
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2. Coefficients of the power series of _2'(_).-

_r
o

3w + 2 E3_+2

2

5
8

Ii

14

17
2o

23
26

29

32

35

3v + 2 E3v+2

o 38
0 41

+ 44 642 857 -i0 44

- 45 093 795 -ii 47

+ 32 044 675 -12 50

- 18 329 982 -13 53

+ 88 663 821 -15 56

- 37 287 360 -16 59

+ 13 891 308 -17 62

- 46 484 507 -19 65

+ 14 123 777 -20 68

- 39 306 312 -22 71

+ i0 092 i01

- 24 052 323

+ 53 487 992

- Ii 149 234

+ 21 869 789

- 40 5ll 235
+ 71 087 162

- ii 849 619

+ 18 810 840

- 28 503 156

+ 41 310 492

- 57 376 598

-23

-25

-27
-28

-30

-32

-34

-35

-37

-39
-41

-43

! °

3. Coefficients of the power series of _3 (q) -

3v + 2 E3_ 2

2

5
8

ii

14

17
20

23
26

29

32

3v + 2 E3_ 2

+ 50 ooo ooo - 8 35

+ 25 ooo ooo - 9 38
- 94 246 032 -ii 41

+ 45 093 795 -12 44

- 20 739 108 -13 47

+ 87 285 627 -15 50

- 33 320 536 -16 53

+ 11 558 047 -17 56

- 36 609 952 -19 59

+ i0 648 904 -20 62

- 28 602 324 -22 65

+ 71 304 684 -24

- 16 576 145 -25

+ 36 085 121 -27

- 73 841 439 -29

+ 14 252 289 -30
- 26 026 919 -32

+ 45 095 094 -34

- 74 320 380 -36

+ ii 677 902 -37

- 17 53l 552 -39
+ 25 195 265 -4l

We shall try to determine the coefficients Clw in such a manner

that the values of the functions 7v(h) and their first two derivatives

for large _ agree with the values calculated from (77). The equa-

tions (77) represent together with the equations following from them

by single or double differentiation with respect to q, a linear system

of equations for Clw , c2v _ and c3v , for constant _ = _0 and for
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every w = i, 2, 3. Unfortunately, however, the coefficient of c3v,
namely the zero expansion, is not knownnumerically. But with increasing
n this coefficient decreases more and more so that it may finally be
neglected. Wetherefore consider now the system of equations

7_(no) = "Y_,(no)+ °l_:2,_(no ) + c2_n

7_ (no) = 7v (no) + Cl_h2,_(nO) + c2_

"' ) ~ "(nO) + ~" _(no)7v _0 = 7v Clvh2,

The Clw calculated from the first two equations agrees, for sufficiently

larger _0' better and better with the value found from the last equa-

tion. This agreement represents evidently a measure for the damping of

the zero expansion in (77). It was attained, up to 5 digits behind the

decimal point, at nO = 3.0 for _3 and at nO = 3.5 for 71 , 72.

The values

i = -1.12150, = 8.46731, _ c13Cll 5c12 = 0.47041

I _ -0 12001
A2 c21 = -0.41497, 5c22 = -0.90750, _ c23 .

-- !

resulted. The tabulations of the functions _2'(n), 71 (_),

y3'(n ) for 0 _ q <= 6.0 are given in the appendix.

(82)

For what follows we need, in addition, the asymptotic expansion of

the function f2(m). It is obtained after an easy calculation if the

asymptotic expansions (47 a/b) and (77) of h2(n) and 7w(n ) (w = i,

2, 3) are substituted into (73) and we then pass over to the former

variable T. There results

I

T4 B22 T in + B21T + B20 Z Tm
f2(T) B24 + B22T2 + T + B21 m

m=l

(83)
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with

81
B24 --_- a3

B22 =
a2 { 2a2.1 P0 + vn_

U

_ a3

B22 = 18 a-_ - 6

a2(2a2 + P0)

2
a I

a2(2a 2 +

al 2
PO)) (in al + in 3 + _(2)- _(_I- _I_)l

.2

0"41497 9 Lp(__)._ aI

o. 90750 9_ alv0 + P0 12a21 PO

12\ aI10r! --'_ \ al
L3/

+vo)+

_a2 + P0

0.12001 p(_ v01 al

r Eh

2 2

al I/3 L al

(c) Remarks on the Function f3(T)

g3(_) = f3(T) there follows from (37) and (39)For the coefficient

the differential equation

g3'" + - 5_g3 + 5g3 x _---i _4g2g I + 5g2,g I _ 3glg 2
(_)
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with the boundary conditions

g2(o): g2'(o): o g3'(_) 3_/3 %lim = (85)
5/3

aI

If one wants to reduce the calculation of g3(_) again to certain uni-

versal functions, one has to split up the right side of (84), for

instance, in the following manner

F
i

(-4gog#'+_g2'gl'- 3gig#'): 1 13812_iKl(n)+
L

2
961_ 1 K2(a) - 961V0_lK3(_) + 3 _ 62_1K4(_) - _ _lvO_KS(n) +

C

_13K6(n) + 3BI2BIK7(a) + 3b12voK8(a) + 4@ 9_a I _1_2K9(_) -

3$12V0Kl0(_) - 9$1v0BIKII(q) - 9Biv02K12(_) -

vo5#13( )+ Vo2  K14( i

wherc BI and B2 denote the expressions (62) and (79),

alv0 + PO
_i :

a I

and, finally, the 14 functions Kv(_) have the form

- " 3 ,rl 2Kv(_) = 7 v rl - 57 v + 87vr I (v=1,2,3) (87a)

= _ ,n2 + 8h2_K4(n) h2"n3 5h 2

K5(n) = hl"n 4 _ 5hl'n3 + 9hlN2

(87b)

(87c)
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Kv(q) = -47vhl" + 57v'h I' - 3Yv"h I (v=6,7,8) (87d)

K9(1 ]) = -4h2hl" + 5h2'h 1' - 3h2"h 1 (87e)

I!

K_(n): _v (_=X0,11,12) (87f)

K13(G) : h2" (87g)

K14(h) : -36h 2 (87h)

Thereby, we have split up (84) into the 14 universal differential

equations

_v"' + n_v" - 5nOv' + 5_v : Kv(n) (v:l,2,...,14) (88)

which have first to be considered under the initial conditions

r_

_v(°) = _v'(°) : _,, (o) : o (¢9)

The number of these differential equations may be slightly reduced:

In (86), K I and KT, also K3, KS, and KII , and furthe_nore K 8 and

KI0 have the same coefficient, except for one constant numerical factor;

that is, one may combine the corresponding differential equations. We

did not do this only for reasons of symmetry.

The last equation (88) has as the solution to the initial condi-

tions (89)

_14 : 12h2

Calculation of the remaining 13 functions _v(q) will be possible only

by numerical integration of the differential equations (88) which would

probably be somewhat troublesome, again because of the numerical insta-

bility of these equations. However, if one then combines the _v(_)

into a function g3(q) in the same manner as had been done with the

Kv(_) in (86), _3(q ) evidently represents an integral of (84) for

which

g2(O) : g2'(0) : g2"(O) = 0

is valid. We have therefore as the most general solution of (84) which



38

satisfies the first two boundary conditions (85)

The still free constant 53 is again to be determined from the remaining

outer boundary condition. For this purpose, one has to find, exactly

as for g2(_), the asymptotic expansions of the universal functions

_w(_). However, we shall not carry this out here.

5. ASYMPTOTIC EXPANSION OF THE STREAM FUNCTION

Our method for solving the boundary-layer problem (13), (14) used

so far consisted in expanding the stream function in dependence on the
variables

into a power series

0,
Y

#(×,y) = = fn( ) n+2
n_

(9o)

For any constant T, the range of convergence of this series will be an

interval 0 _ a _ _l(T). For T_ _, certainly Gl(T)= 0(_) will be valid.

On the one hand, the fn(T) tend toward infinity like Tn+2, on the basis

of the boundary condition (34c). On the other hand, with the simultaneous

limiting process _ _ 0, T_ _, (90) is transfo_ned with _T = _ = constant

into the power series of the entrance profile _(y) which is convergent,

according to assumption. Hence, there follows altogether that the series

(90), for retained small a, is usable solely for small T (that is,

therefore, small y). As is frequently necessary in boundary-layer theory,

we require for calculation of the stream function for large y an asymp-

totic expansion of _.

In order to obtain a clue for this, we shall investigate the behavior

of (90) in the limiting process a_ 0, T_ _, aT = constant, as far

as this limiting process takes place in the range of convergence. Since,
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therefore, T, in particular, is to tend toward infinity, T _ _, we

may - as is usual in the theory of asymptotic series - substitute for

the functions fn(7) in (90) their asymptotic expansions. This gives,

according to (64) and (83), the beginning to the asymptotic series

_2f(_,T) _ 9 al_2T2 + _3 (BIsT3 ÷ BIIT+ BI0) + _4 (B24T4 + B22T2 +

B21T + B22 T in T + B20 + B2,_2 T-2 + ... ) + ..... (91)

which is valid for the limiting process _ _ 0, T _ _, _T = constant

(as long as (90) converges). In order to arrive at the stream function

T(x,y), one must introduce the x, y or, simpler, the d, y-coordinate

system. This is done by the substitution T = _Y- and the following
3_

rearrangement according go _-terms (which is always permissible for

asymptotic series)

(al Y2 _7 Y3 B24 Y4 )_~ T + +TZ- +"" +

_3 + B22 i in 5)Y + +10 3 y in y + y( 21 - "'"

o4(,,2o+ ..- ) + ..... (92)

Thereby, the limiting process _ _ 0, T _ _, dT = constant has become

the simple limiting process a_ 0 for constant y. We have already

made use of this, inversely, in the derivation of the boundary condi-

tion (34c). (92) therefore represents an asymptotic expansion of @(_,y)

for _ _ 0 for constant (larger) y i0 of the generalized form

k

_ _ [ Z Sk_(y)_k ink-Za

k=O _=0

(93)

10For small y, the series (92), corresponding to its derivation,

is of course no longer valid, that is, it does not satisfy the two inner

boundary conditions (12a), either.
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As will be shownin the appendix to this report, it is permissible to
use such series in calculating exactly like ordinary asymptotic expan-
sions, if one only uses for them the definition

F . ,n
_ _ {soo+ slO(_ in o + ... SMNOM inM-Na] I 1 : 0 (94)lira

o-_ 0 L\]_ # InM-N(_

- with arbitrary M and N _ M, and with constant y.

We may now drop the assumption, contained in the derivation of (92)

that _ and y may vary only within the range of convergence of (90).

Rather, the expansion (92) must represent everywhere where it has meaning

also the asymptotic series of the stream function _(_,y), since _(_,y)

can possess only one asymptotic series of the form (93) for _ _ 0, as

shown in the appendix. However, we do not know in what range (92) is

defined altogether, since for the time being we cannot make a statement

on the convergence'of the coefficient expansions. But even if we pre-

suppose this convergence for all y, the stream function for y of arbi-

trary magnitude can still not be actually calculated from (92): For

practical purposes, we always know only a finite number of terms of the

coefficient series of (92), since we can of course determine only a

finite n_nber of functions fn(T) in (90). It is not even to be

expected that one will get far beyond the three functions f0(T), fl(T),

f2(T).

In order to be able to use (92) in the calculation of _(_,y) for

all large y, we must find another type of rule for calculation, which

is valid for all y, for the coefficients of the _ terms, instead of

the series used until now. This one can actually achieve if one takes

into consideration that (92) must satisfy the boundary-layer equations

(13). If we write, therefore, (92) abbreviately in the form

_ s0(Y) + s2(y)_2 + g3(Y)a3 in a + s3(y)_3 + s4(y)a4 + ... (95)

and substitute this into (13), we obtain, by comparison of the coeffi-

cients of the first four _ expressions occurring, the differential

equations II

s0's 2' - s0"s 2 = 0 (96a)

So'g3' - So"g3 = 0 (96b)

llThis, in turn, corresponds to an idea of S. Goldstein which he

used for the calculation of the wake behind the plane plate [12] and,

in _, for the flow in the proximity of the separation point.
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< ) < ), , , . i _3 = PO + Soi _3 - So s3 +So s3 + 3
(96c)

, , ,, i( _s2 )SO s4 _ So s4 = _ s2s2,. ,2 (96d)

From these, we have to calculate those solutions sv(y ) which,

for small y, agree with the coefficients of (92). On the basis of the

well-known uniqueness theorems for ordinary differential equations,

they will then be everywhere equal to these coefficients. With the

functions sw(y ) found in this manner, (95) now represents the begin-

ning of the desired asymptotic series of _(_,y) for _ _ O, since,

as mentioned above, every function can possess at most one asymptotic

expansion of the form (93).

Before carrying out the integration of (96), we should like to

make a remark: Entering into the boundary-layer equations a priori an

expression (93) for the desired asymptotic expansion of _(_,y) is

suggested. According to the definition (94), one must then perform,

for any two values M and N, the comparison of coefficients in the

expressions up to oM InM-N_. Thereby, one obtains a system of

+ o uat on 
cients s_, , SMN. However, from this we can never draw a con-

clusion as to the asymptotic expansion (92) or (95), without knowledge

of 9(_,y), thus of (90), since we do not even know what Sk_ appear

at all and which disappear identically.

Now the differential equations (96) are to be integrated under the

initial conditions given by (92). Since, of course, according to our

statement of the problem, the stream function _ for _ _ 0 must cor-

respond to the entrance profile _(y), we have, first

So'(y) = _(y) = 7,, anyn

n=l

(97)

which_ self-evidently, agrees with (92). Thus, there results from (96a)

s2(y) = _2So'(y) = _2_(y) (98)

where, because of (92)

BII

k2 = 3a I
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In exactly the samemannerwe obtain

_3(y) = Y3s0'(y) = Y3_(y) (99)

with

Y3 = B22
5al

The differential equation (96c) is- under the assumption

certainly valid for y _ 0 - equivalent with

, + i _3') - So" + = + So'"

,2
,2 sO

sO

So'(y) = ¢(y) ? o

whence follows immediately

_oypo + So _oypo + u"s3 + ! _3 = so' dy = ](y)
5 ,2 _2

s O

dy (ZOO)

Since the general solution of the homogeneous equation (96c) as well as

g3 is, according to (99), a multiple of sO ' = u, we obtain, after we

have put for abbreviation

SO y PO + uI(y) = .._
u

dy

altogether

u(y)I(y)s3(Y) = h3 (y) + ~ (i01)

As may be easily checked, the beginning of the expansion of

s3(y]. . = 2a2 + PO

a I

k3a2

+

s3(y) reads

(_ 1 (6a3 2a2(2a2 + PQI

a2(2a2 + PO y + In +
+ 3al - y Y

a12 \al a12

a22 - ala,5 (2a 2 ]/Y 2 +12a4 12a2a3 + 3 + PO .....

al a12 a13
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so that

a2(2a2 + PO)

al_

+ -!-1 (B21 - B22 in 3)
3a I

Because of (98), the differential equation (96d) may be written

in the form

IT

sO 's4 ' - so s4 - BII 2 ,,2)
18al 2 (So'So'" - sO

A particular integral is

s4 - BII 2 So,,

18al 2

therefore we have as a general solution

2

s4(y) - BII 2 _, + _4u

18a 1

(i03)

The constant X4 can no longer be determined immediately from (92),

unless further coefficients Fn(T ) in (90) are calculated.

Thereby it is now possible to calculate without further difficulties

the desired velocity distribution u(x,y) in a small interval x0 $ x _ x I

for all y _ O. For small y, this is done directly with the aid of the

series (90); for larger y, one has to use the asymptotic expansion (95)

resulting from it.

In the derivation of this solution u(x,y) of the boundary-layer

equations (13), we did not consider at all the outer boundary condition

: u (x) (lO4)

As mentioned at the start, however, the author has shown in another

report [9] that, under certain assumptions, this boundary condition

is always automatically satisfied in an interval x0 <= x <= Xl, if only

the entrance profile _](y) correctly adjoins the external flow:

: : (lO5)
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We shall here not further concern ourselves with the exact presup-

position of this theorem but shall simply verify that our solution

u(x,y) - as far as we calculated it in the x-direction - for y _

actually satisfies the outer boundary condition (104).

For large y and small _, the equation (95) is valid for u(x,y),

thus with consideration of the formulas found for the sv(y )

u = _y _ _ + k2_'_ 2 + _3_'_3 In _ + s3'(y)_3 + I_4_'

BII _, o4 +

18al 2

(106)

For _(y) let us assume first, that (105) is correct. Furthermore, we

assume that _(y) with all its derivatives for y_ _ possesses asymp-

totic expansions. 12 If for instance

_i _2
~u (x o) +--+--+ .....

Y Y

one obtains from it, as is well known, the asymptotic expansions of the

derivatives by formal differentiation with respect to y. Thereby the

existence of the boundary values

~(n)
lim u (y) = 0 (n=l,_,...)

y_

also is guaranteed, and we obtain from (106) for constant

lim u(x,y)_ lim _(y)+ s3 lim s3'(y)+ .....

y-_ y-_

= UJXo) + (x - xO) lim sS'(y) + ..... (107)
y_ _

12This assumption is fundamental also for the general theorem.

corresponds to the character of the boundary-layer flow which has to

make asymptotically the transition to the outer flow.

It
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For the boundary value remaining on the right side, one finds from (96c)

< l)u_(xo) lim s3 (y) = PO + llm So" s3 + y
y-_ y-_

"s 'I(y)
= PO + lim s O 0

: Po + u_(xo) lim _'I(y)
y_

The integral l(y) has, on the basis of our assumptions regarding _,

for y _ _ certainly an asymptotic expansion. The latter starts, as

may be easily checked, with

I(y) Po 2_lPoy in y + powers of 1

_o2(xo) _3(_) Y

Since the expansion of _'(y) reads

_,(y)~ _i 2_2

y2 y3

one recognizes immediately that

lim _'I(y) = 0

y_ _

and accordingly

Po u_(xo)u_'(_o) u ,(Xo)
Jim s_' (y) - Uoo(XO ) - uoo(Xo ) :

y-e oo

(107) becomes therefore actually

u(_,-)~ u_(_) + u.'(_o)(x- xo) + .... u_(x)

and, on the basis of the convergence of the series of u_(x), the asymp-

totic sign may be replaced by an equality sign.

Thereby we have proved the validity of the outer boundary condition

(104) for the broken-off series (90) and (95) as far as they approximate

the solution u(x,y). If one includes further terms of the series, the

proof for them shows perfect analogy.
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6. COMPILATION OF THE METHOD FOR PPACTICAL APPLICATION

Our method developed so far represents a solution of the problem

formulated in section i: to calculate the boundary-layer flow in the

proximity of a jumplike suction start. However, as also has been said

in section i, the possibilities of application of the method, are thereby,

by no means exhausted. As may be confirmed immediately, we have in the

derivation of the method never made use of the assumption that the

entrance profile _(y) at the point x = x0 of the suction start is

a velocity profile of the boundary layer without suction. Accordingly,

_(y) may obviously be also a profile of a boundary layer with suction;

merely a sudden change of the suction velocity then occurs at x = Xo,

or the suction ceases abruptly. In any case, our method for calculation

of the flow may be used a short distance behind the point of disconti-

nuity x = xO. In order to facilitate the practical solution of these

problems, we shall, below, once more compile all necessary formulas.

For the example to be considered, first let the outer velocity dis-

tribution be given in the form of a power series

o

U°°(X) = Z un(x - xO)n

n=O

(108)

of which, it is true, we require only the first coefficients u0 and uI.

At the point x = x0 the suction velocity v0(x) is now to become dis-

continuous; let for instance

V(Xo,O ) = v0 _ lim v(x,O) : _0 (109)

x _ xo-O

be valid. For the special case of sudden suction start - formerly the

only permissible one - for instance, v 0 _ 0, v_0 = 0; at the sudden end

of the suction, in contrast, we have v0 = 0, _0 _ 0. We shall assume

that the calculation of the boundary layer up to the point of disconti-

nuity x = x 0 has already been carried out. Thereby, one then knows,

in principle, the entrance profile _(y) - unfortunately, however, in

general only numerically at the equidistant points Yn = nZ (n = 0,i,

2, .) of a fixed step interval _. However, we need of _(y), too,

at least the beginning of the power series.

](y) = alY + a2y2 + a3y3 + a4y4 + ..... (ii0)



47

In the determination of the occurring coefficients an one must

always observe the well-known wall restrictions.

a2 = -2u0u I + 2_0a I a3 = 6V_Oa2 (iii)
e

By them, a2 and a3 are unequivocally coupled to aI or - for _0 = 0 -

fully determined; aI and a4, in contrast, remain completely undeter-

mined, aI is ascertained, first only approximately, for instance by

numerical or graphical differentiation of _(y) in y = O. Hence, a2

and a3 may be calculated. For a sufficiently small ordinate Y = Yl,

we then find a first correction of a I from the deviations of the first

three terms of (ii0), compared to the value of _(Yl)" Then, the coef-

ficient a4 in first approximation is determined for a somewhat larger

Y = Y2" Finally, with its aid, a second correction of a I (thus also

of a 2 and a3) is carried out. In general, thereafter, sufficient

accuracy is attained for aI whereas the most inaccurate coefficient a4

is only of small influence, anyhow. 13

After this preliminary work, the constants which return again and

again

2a 2 + Po
P0 uOUl _ 81"= - + v0

a I

PO 2a2 + PO

_i = v0 + a-_ _2 - al 2

may now be calculated, and with them the coefficients

9a I
A 0 -

All = i.5_ _l

AI2 = 3.195253 3_ al*

(ii2a)

13A detailed representation of the method for determination of the

an here described, for the special case _0 = 0, may be found in

H. C_rtler [17].
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as well as

A21 : 5.1O4819(51")2

A23 : 9.585757 vOBl*

a__3
A25 : 37.O3647al + ll 45011 (51")2

A22 = 0.958576 _i_i *

A24 = 1.5 v0_ I

- 16.23311 _IBI * +

9.01847 vOBl*- 12.34549 a2_ 2

(l12b )

Hence we then obtain, with use of

gl'(n) : -All_2 + Al2hl'(_) (l13a)

and

g2'(_) : A217-I' + A22Y 2' - A23Y-3' + A24 _3 + A25h 2' (l13b)

given in the appendix, thus far a small

O" o.2 , __3
: ' - + _ g2 ('q) 3 + .....u(o,_) Ao,l y + _YEi gl (,1) 3

(114)

The choice of _ depends on the requirements of the individual examples.

In our practical test_ we have admitted, at most_ numerical values

__ O.15, in order to lose as little accuracy as possible. This -

fundamentally small - step interval in the x-direction, however, brought

us in every case so far beyond the influence of the flow discontinuity

at x = Xo, that a difference method became again applicable.

If one now introduces into (114) the variable

3_
y=--_

which can be done directly with simple linear interpolation - the desired

velocity profile u(x,y) for small y is obtained. How far this u(x,y)

must be calculated in the y-direction depends on the individual case.

Generally, one will use for (114) the tables of the universal functions

up to _ = 4.0 or 5.0. Frequently, however, the automatic junction to
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the asymptotic expansion of u(x,y) is attained earlier. For y-values

beyond this junction the deterioration of the approximation formula (114)

becomes slowly noticeable.

For large y, the asymptotic expansion of u(x,y) is now to be set

up according to section 5. For this purpose, we calculate first the con-
stants

BII = 2.057582 3_[_i 51"

_ a5

B22 = 18 _iI - 6a2_ 2

B21 = (0.333333 in a I + 1.595155)B22 - 2.11835 (51") 2 -

0.86991 _161 * + 1.15039 v061* 14

(115)

a4 2 a2 -- a22 + 2ala3

= " _2
_3 12 al 3 a I B22 2

a I

14
This contains, by the way, the determination of the values _),

_(_) of the logarithmical derivatives of the gamma function; these values
\JJ

are rarely to be found in tabular compilations. From the well-known
formulas

r(_)r(l- ×) --
sin _x k3J L 3 J\ 3 I 3x-ll2

one obtains, by logarithmlcal differentiation and substitution of

or x = i, a linear system of equations for the two unknowns _I_)'

 o ut on

i
X ----

3

_(_) = -C _ 5 in 3
2_ 2 _) = -C - _ in 5

(C = 0.577 215 66 Euler's constant.) Correspondingly, we obtain for the

expression occurring in (73) and (83)

- in 3 + _(2) - _"., - = -2 + 2 in 3 + C +

= 2.588 259 6i
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Thereby the first coefficient functions of that expansion read

I

so = _(y)

B

s_' - ll_,(y)
3a I

B22 _,(y)
_3' = 3a I

u" + P0 pY u"
s3, = _3 _, + + _ + PO dy

Jo

(116)

with

i

h3 = a-_ (_2 + 0.333333 B2I - 0.366204 B22)

For evaluation of the integral appearing in s3' , it is best to

split up the latter at an arbitrary but small displacement

I0 _Y u" + P0

Y
_'" + PO dy = _-(2) + dy

,,,2_2 u

where then

I(_) = -#2 _ + 0-333333 B22 in _ + p3 _ + .....
Y

and for the remaining integral now one of the known formulas of quadra-

ture, as for instance the trapezoidal rule, may be used without difficulty.

If the entrance profile _ is given only numerically at the points

Yn = n_ (n = 0,1,2, .), the calculation of the derivatives _' and

_" will possibly cause certain difficulties. According to our experi-

ences, however, it is generally perfectly sufficient to approximate _'

and _" by so-called alternating differences of the first or second

order. If one writes abbreviately

_(Yn) = _n (n=O,l, .. .)

: %1 -  n-1 (n=l,2, ...)

O

Vn2 = Vn+l - _Tn_1 (n=2,3,...)
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therefore

u' Vn u" - vn2

2_ 4_2

and the equations (i15) take the finite form

V

sO (Yn) = _n

o
s2' (Yn)= BII

6al_Vn

_3'(Yn) - B22 Vn

6al_

!

s3 (Yn) = L n i Lk. + i L* + ... + i L* + I Ln. I+ 4 2 k+l _ n-1

with

Yk = _
Ln = I /Vn2 POIUn \4_ 2 + Ln* = --

T -- •The formula for s3 (y) is valid only for n > 2 For smaller values

of y - as far as such values are needed altogether - one uses best the

power-series expansion (102).

With the aid of the Sn'(y) we now obtain immediately

u(o,y) = So'(y) + s2'(y)o2 + s3(Y)03 In o + s3'(y)o3 + ..... (118)

There _ is to be selected exactly as for (114). These u(x,y) always

adjoin automatically and correctly the values from (114) so that we now

have the velocities u for the entire range of the y.

7. EXAMPLES

ist example: Boundary layer on a plane plate in a longitudinal flow

with constant outer velocity distribution u_ for jumplike suction start

at a point x = xO.
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Weuse for the introduction of the dimensionless coordinates,
according to (12), L = x0 and U = u as characteristic quantities.

Then the outer velocity distribution u * 15 always has the value 1

and the suction starts at the point x" = i. Up to this point, the well-

known Blasius plate boundary layer could freely develop; tabulation of

its values may be found for instance in H. Sehlichting [13 on p. 103.

We obtain accordingly for the inlet profile _*(y*) is x* = i, as may

be immediately confirmed

_*(y*) = 0.33206 y* - 0.00230 y.4 + _ .....

As suction law, we selected successively

v0.(x.) v0(x)= = 0.5, 1.0, 1.5
Uoo

In each of these three cases we now used our calculation method for the

transition over the flow discontinuity at x* = i, up to the point

x* = 1.0015. Here the influence of the discontinuity had diminished so

far that for the further calculation the difference method described in

appendix 2 could be applied. A criterion for this applicability is the

form of the second derivative of the velocity profile with respect to y*.

Corresponding to the wall restrictions (iii) U_.y. on x* = i becomes

discontinuous. This discontinuity is smoothed out for instance in the

manner shown in figure i for our example of the suction value v0* = 0.5.

The difference method works satisfactorily only when the minimum of

-Uy,y. lies at least at the third or fourth grid point, without the

step interval Z in the y*-direction being too small.

For each of the three suction values the calculation thus began at

x* = 1.0015 with the difference method. We selected as the step inter-

val in the y*-direction first Z = 0.2 and later Z = 0.4, whereas in

the x*-direction - corresponding to the slow diminishing of the influence

of the discontinuity - h increased from 0.0035 (at the first step) to 0.i.

For the suction value v0* = 0.5, we performed this calculation up

to the point x* = 1.15 where - as figure i shows - the second deriva-

tive _.y. had been approximately smoothed out. Figure 2 shows the

velocity curves obtained in this manner for constant distance from the

,l=
C
I-

15The dimensionless coordinates introduced according to (12) will

be provided with an asterisk, corresponding to their definition, since

the simplified notation without asterisk used so far now could give rise

to confusion with the original variables which were dimensional quantities.



53

wall. One recognizes from it how the discontinuity of the v-boundary

values at x* = i, y* = 0 has been propagated into the flow along the
characteristic line x* = i.

Exactly as for Vo* = 0.5, we calculated also for v0* = 1.5 up to

the point x* = 1.15. For v0* = 1.0, in contrast, we used the differ-

ence method up to the time where the velocity profiles within the scope

of calculating accuracy (about i percent) had become equal to the asymp-

totic suction profile

-v0*Y*
Ua*(y*) = i - e

This occurred at x* = 2.5. Figure 3 shows some of the velocity profiles

obtained and figure 4 the pertaining streamiine pattern. In figure 4,

too, one recognizes again the discontinuity along the characteristic
line x* = i.

The four following figures serve to illustrate the differences for

the various suction values.

For the suction value Vo* = 1.5 we assumed furthermore that behind

x* = 1.15 the wall is again impermeable and that, therefore, the suction

ends suddenly at this point. For surmounting the flow discontinuity

originating thereby at x* = 1.15 _¢e applied again our method developed

during this investigation. For the last suction profile at x* = 1.15,

the beginning of the power series

u*(l.15 y*) = 1.0430 y* - 0.7823 y.2 + 0.3911 y.3 _ 0.0035 y.4 + .....

determined according to section 6, was used. For further calculation

from the point x* = 1.152 onward G_rtler's difference method was used

again, this time in the form improved by H. Witting, with the step inter-

vals _ = 0.4 and h between 0.003 and 0.i. Figures 9 to ii show a

few results of these calculations.

From figure ii one recognizes that the displacement thickness is

subjected to a long-lasting reduction by the suction slot whereas for

the wall shear stress the effect of the suction rapidly ends again.

2nd example: Boundary layer on the circular cylinder with pressure

distribution according to potential theory for sudden suction start at

a point x = xO.

Let R be the radius of the circular cylinder and U0 the velocity

of the approach flow. When the dimensionless coordinates (12) are referred
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to the quantities L = R_ and U = U0, the velocity distribution at the
2

wall according to potential theory is

u *(x*) = 2 sin x--
2

As the point of the suction start we selected Xo* = 3.0 which corre-

sponds to a center angle _ = 87.3 80 . Up to this value x* = 3.0, the

boundary layer could be calculated without difficulty, with the aid of

the Blasius series. The tabulations of A. Ulrich _8] were used.

For the suction, starting Jumplike at x* = 3.0, we assumed first

Vo* = 0.5. For surmounting the flow discontinuity we had to use our

method developed during this study, in the region 3.0 _ x < 3.002.

Behind x* = 3.002 the difference method proved again workable.

In order to shift the separation point as far rearward as possible,

it was suitable also to continuously increase, with increasing x*_ the

suction value Vo*. A difference method is perfectly capable of dealing

with such a continuous change of the v-boundary value v0*(x* ) as long

as the variations Vo*(X* + h) - Vo*(X*) originating at each step of

the process assume at most numerical values up to 0.i, without a smaller-

than-usual step interval h being chosen. However, if these variations

exceed 0.i or if, in order to prevent that, h would have to be very

small, the difference method fails rather rapidly. Then one is solely

dependent on a jumplike increase of v0* , with use of our calculation

method for surmounting the discontinuities.

Applying what has been said we now calculated the boundary layer,

beginning at x* = 3.002, with the aid of the difference method, for the

following suction law:

{_:5 + (x* - 3.0) 0.75 for 3.0 _ x* _ 3.1V0* = 1 + (X* 3.8) for 3.8 _ x*

The step interval in the y*-direction was Z = 0.4, whereas h varied

at first, in the range 3.0 _ x* _ 3.1, between 0.003 and 0.02, and, for

x* _ 3.1, between 0.05 and 0.1.

For this calculation, separation occurred at the point x* = 5.1.

This corresponds to a center angle _ = 146.1 °. For a circular cylinder

without suction, in contrast, H. Witting [l_ found separation as early
as at x* = 3.80, that is, _ = 108.9 ° .

Figures 12 to 15 serve to illustrate the results.

Translated by Mary L. Mahler

National Aeronautics and Space Administration
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APPENDIX I
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APPENDIX II

REMARKS CONCERNING H. GORTLER'S DIFFERENCE

METHOD IN THE CASE OF SUCTION

The method developed in the present report permits further calcula-

tion of a boundary-layer flow in spite of the influence of a discontinuity

of the value v(x,O) of the v-velocity component at the wall. For the

remaining flow regions with continuous v(x,O), one may then use without

difficulty one of the customary methods for boundary-layer calculation.

(See section 2.) In our examples - as far as no exact solutions were

available - we always used the difference method developed by H. G_rtler

_. For the flow without suction, consideration of the improvements

indicated by H. Witting [i_ proved to be very favorable. These improve-

ments amount to a more exact treatment of the region near the wall and

produce, particularly in the proximity of the separation point, a sig-

nificant increase in accuracy. For the calculation of the flow with

suction, in contrast, use of those improvements is no longer profitable -

first, b_cause they become then somewhat more troublesome, and second,

because in this case the original method of G_rtler works much more sat-

isfactorily, in the proximity of the wall as well. The reason for the

latter fact lies especially in that the u-velocity profiles have, in the

case of suction, a "fuller" form, that is, they correspond for instance

to velocity profiles without suction as appear far ahead of the separation

point.

In flows with suction, other small variations of G_rtler's difference

method, instead of Witting's improvements, have proved extraordinarily

favorable. We shall describe these variations below. We refer to the

original report quoted [lO] and can therefore be brief.

In G_rtler's difference method the boundary-layer equations in their

dimensionless form

UUx +VUy: u_ui +Uyy

Ux+Vy=O

(1)

with the boundary conditions

u(x,O) = v(x,O) = 0 u(x,-): (la)

which we change into
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u(x,o): o v(x,o): -Vo(X) u(x,_): _(x) (ib)

are replaced by finite difference equations. For this purpose we intro-

duce, first, in the half plane y _ 0 a grid system

xi = x0 + ih (i=0,1,...) (h > 0)

Yk = k_ (k=0,1,...) (_ > 0)

and write for abbreviation

Uik = u(xi,Yk) Vik = v(xi,Yk) (_)i : u_(xi)_(xl) (2)

G_rtler approximates the derivatives Ux, Uy, and Uyy by the finite

expressions

Ux(Xi,yk):aim2h: (Ui÷l,k-ui- ,k) (Sa)

Uy(Xi,Yk) Vi___k= __i= 2Z 2Z (ui'k+l - Ui'k-1)

_Ik 1

UF-y(xi,Yk) - 4_ 2 - 4_ 2 Vi,k+l - _Ti,k-l)

(k> l) (9)

(k -_ 2)

_ 1

4_2 (Ui,k+2 - 2ui, k + Ui,k_2)

(5c)

These approximations by means of quotients of "alternating" differences

have, compared to those by means of the usual difference quotients, the

advantage of greater accuracy. On the other hand, they involve various
difficulties.

If the approximate equation (Sa) is used, every two successive func-

tion values Uik and Ui+l, k are connected only indirectly through the

differential equation. Thereby it becomes evident in the calculation

that the two sequences U_l,k , Ul,k, US,k, . . and U0,k, U2,k,

U4,k, . . . have for constant k, a smooth course in every case, but

deviate more and more from each other, with increasing first subscript.

This "splitting-up" of the solution requires a consecutive smoothing of

the calculation results. We refer, for this, to the detailed considera-

tions in H. Witting [19]. This difficulty is eliminated to a great extent

if, instead of (3a), approximation by ordinary differences

h h
(}a*)
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is used. In so doing, one has to make allowance (for equal step interval)

for a slight increase in the rounding-off error; however - as H. Witting

shows in [20] - this is amply compensated by an essential increase in

stability of the method with respect to small numerical disturbances. The

effect of this in the calculation is precisely a strong reduction of the

splitting-up mentioned above.

A further unfavorable consequence of the approximations (3) is that

they leave the derivatives

Uy(Xi, 0) Uyy (xi, O) Uyy(Xi, _) (4)

undetermined. This is not too bad for Uy(Xi,O ) and Uyy(Xi,O ) since

these values do not enter any farther into the present method. But, on

the other hand, one requires for Uyy(Xi,Z) - because of the proximity

to the wall - a finite expression which must be more exact. For flows

without suction one has here the great advantage that on the basis of the

first wall restrictions

Uyy(x±,0) = -(u_u_)i

the derivative Uyy(Xi,O ) is known. If we set therefore

V2io: 4_2uyy(xi,0) : -4z2(u_ul)i

the missing second difference _il = 4Z2uyy(xi, Z) may now be obtained

for instance by cubic interpolation in the differences of the second

degree which leads to

Thus one obtains finally also ViO = 2ZUy(xi,O) from

vi0 : vi2-

For flows with suction the method for determining _il described

just now is not applicable since the first wall restriction now reads

Uyy(xi,O) : -(u_u_)i + Uy(Xi,O)Vio

thus the quantities on both sides are unknown. Therefore one would be

dependent on obtaining a finite expression for _ll by extrapolation;

however, it is hardly possible to attain a satisfactory accuracy. As

experience shows, a very widely varying quality of approximation has a
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muchmore unfavorable effect on a method than an approximation of lower
degree which is uniform throughout. Accordingly, it lends itself, simi-
larly to the procedure for Ux, to approximate the derivatives Uyy also
by ordinary difference quotients

Uyy(Xi'Yk) = 8ik_2= __2 = _(ui, k+l - 2Uik + ui, k-l)
(3c*)

(k _ i) since thereby Uyy(Xi,Z) , too, is determined. This approximation

formula (3c*) has still another advantage compared to (3c): (3c*) sig-

nifies geometrically for every xi the approximation of the curvature

of the curve u(xi,Yk) by means of the circle through the points Ui,k+l,

Uik , Ui_k_l, whereas in the case (3c) for the same problem the points

Ui,k+2, Uik , Ui,k_ 2 are used which lle farther apart. For more pro-

nounced variations in curvature which still occur for instance at a con-

siderable distance behind the jumplike suction start, this has evidently
very unfavorable effects.

A perfectly analogous development of the difference method as indi-

cated by G_rtler is now possible. For this purpose we evaluate first the

integral

FYv(x,y) : v(x,o) - Ux(X,y)
_J0

which follows from the continuity equation for the velocity component v,

with consideration of the boundary conditions (lb) and the approximation

(3c*), with the aid of the trapezoidal rule

k-1

Vik = rio - _ dik - _ div (5)

v=l

If (2), (3a*), (_b), (3c*), and (5) are then introduced into (1), there

results, for solution with respect to the unknown dlk

dlk = (6)

2 Ulk - i Vi k

For carrying out a calculation step - thus the numerical calculation

of the dlk for constant i - one uses suitably for instance the

following scheme
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h_.•• 2h(u_u_)i = • h

- _ Vio • . .

(1) (2) (3)

Yk Uik XTik 52k 2Uik-O. 5Vik

0 0

Uil VIi 521

2 Z ui2 Vi2 522

2Uil-O. 5_7ii

2ui2-0.5Vi2

(6)

h
- T viO +

k-1

div

v=l

h
- T Vio

h

- y rio
h

- _ Vio + dil

(7) (8)

dik Ui+l,k

0 0

dil Uil + dil

di2 ui2 + di2

One calculates therefore first in every operation on the machine

(5) = Vik = Ui,k+l - Ui,k-I

(4): _k : ui,k+l- 2 uik+ ui,__l

(5) = Nik = 2 Uik - 0.SVik

Then the two last columns may be filled in line by line• For every

one may obtain the value

(3)(6) + (2h/Z2)(4) + 2h(u_u.')i

(7) : dik = (5)

k,

again in one operation•

about 20 profile points

mately half an hour.

For performance of such a calculation step with

Yk, an experienced calculator requires approxi-

Regarding the step intervals h and Z we have found by experience

that, for ?_, numerical values up to at most 1. O are most favorable•

2h

For _> l, in contrast, soon a certain accumulation of error becomes

noticeable for the values near the wall of dik. Small step intervals

require, therefore, also small h. As one soon finds out, a distinct

optimum exists for every example. A phenomenon of splltting-up of the

type described above will occur generally only to a very limited extent
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for Uil , ui2 , and possibly for uis. For its elimination, the smoothing
rule given by H. Witting

d_k = 0.25 di+l,k - 0.5 dik + 0.25 di_l,k (7)

is very useful. One first calculates (which requires little expenditure)

the three first values di+l, k from the (i + l) th step, determines with

these the improved d_k according to (7) and repeats the same procedure

iteratlvely, if necessary. _his smoothing of the d-values near the wall

may be performed mechanically perhaps at every third or fourth step and

produces then a very satisfactory variation of all sequences of values.

After the calculation has been carried out in the manner described

above, it remains to calculate the values Uy(Xi,O) of the wall-shear

stress, not required until now. One may choose various methods. If only

a first survey is desired, one will put for instance

_y(xi,0) = 5i2 - 5_I = ! (ui3 - 2ui2 + 2Uil)

A better finite expression is obtained, in a manner analogous to

H. Witting's, by means of the formulation

5

8i0 : Kei + _iAv uiv (ei= - 4ze(u_u&)i)

V=l

if the latter is expanded according to Taylor and the first two wall
restrictions

uyy(x,o)= - u_u_ - Uy(_,o)v0(×)

uyrflx,o): - _yy(_,o)vo(x)

are taken into consideration. By comparison of the coefficients, a system

of four linear equations for the six unknown coefficients originates. It

has proved expedient, because of the bad error propagation at the wall,

simply to put A 1 = A 2 = O, according to H. Wltting's method. Then the

finite expression for 810 reads finally

8i0 =1[-(21150 +9o00vi)ei + 80OO0ui3- 50625 ui4 + i0368 ui51
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with

and

N = 89740 + 84600Vi + 36000v_

Vi = -ZVo(Xi)

This corresponds, for Vi = 0, exactly to the formula given by H. Witting
for the flow without suction.
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APPENDIXIIl

ONA GENERALIZEDKINDOFASYMPTOTICSERIES

In section 5, an asymptotic series of the form

F(x) _ Z Z ak_xk ink-_x (I)
k=0 _--0

for x_ 0 occurred. Wehave still to showthat one can calculate with
this series in exactly the sameway as with ordinary asymptotic expan-
sions. Below, we shall produce this proof, but directly for the con-
siderably more general series of the form

o

(2)

for x _ x0 with functions Cn(X) corresponding to

Definition I: Let an infinite sequence of functions

2, .) be prescribed, with the properties

@n(X) (n = O,1,

(a) All ¢n(X) are continuous and different from zero in a half-

open interval J of the form x I <= x < x0 or Xo < x <= x2 - for which

x0 = ±_ also is permissible

(b) At the excluded boundary point x0 of

value lim Cn(X) exist for every n.

x _Xo; xeJ

J, let the limiting

(c) For all n there is always:

lim Cn+l(X)

x _x 0 Cn (x)

xeJ

-0 (3)
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Such a sequence of functions we shall call a C-sequence over J

with the limiting point Xo, and denote it by LJ_Cn_j,xO

A very simple example of such a @-sequence is formed by the functions

¢n(X) = xn (n=O,1,2,...) (4)

for x_ 0 where J is, for instance, the interval 0 < x _ x2. A

similar example is, of course, the case

I (n_,l,2, ) (5)
On(X) = x-_ ...

for x _ _ in (0 <)x I _ x < _. The functions

k Ink-_xOn(×) = x (k---O,1,...; _,l,...) (6)

occurring in the series (i), with n = (K_±) + Z likewise represent a

C-sequence for x -_ 0 in 0 < x _ x2.

In all C-sequences, there results from the properties (b) and (c)

immediately

lim On(X) = 0 (n=l,2,...) (xeJ) (7a)

x_

whereas nothing is stated concerning the limiting value of C0(x). In

what follows, we shall always assume

lira Co(X) _ 0 (xeJ) (7]0)

x-_x 0

This does not represent any restriction of the generality; if

lim C0(x) = O, we simply consider the ¢-sequence in the extended

x _ x 0

fo_ Co*(X) _ 1, Cn*(X) _ %_l(x) (n _ 1).

Furthermore, for every C-sequence there applies the rule that any

finite number of its functions Cn(X ) are always linearly independent

in the entire interval J. Let us assume that there exists a relation

of the form
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Z
finite number

of n

CnCn(X) m 0

in which for instance nI is to be the smallest subscript_ with cnl _ 0.

Then we obtain, after division by Cnl(x ) for x_xo, a contradiction

since the left side of the equation tends toward cnl # O, because of (3).

With any arbitrary C-sequence , we can now form series of the form (2)

which we shall explain_ in analogy to the ordinary asymptotic expansions,
as follows:

Definition 2:

anon(x)

n=O

C-sequence for

for every m

IC } be a C-sequence. A series of the formLet n J, xo

which need nowhere converge is called an asymptotic

x _ x0 (xeJ) of the function F(x) defined in J when

lim (x) - anon( 1

x-_ x0 n=O Cm_X;'_
xeJ

- o (8)

For this we write abbreviately

F(x) _ _, anCn(X )

n=O

(9)

Corresponding to our above examples, this definition contains the

ordinary asymptotic series and also the expansion (i) as special cases.

On the basis of our assumption (Tb) made for all C-sequences, one

may assume, in every C-series, C0(x) _ i as normalized. This signifies

only a transition to the C-expansion

F(x)
"_ > anCn*(X)

Co(X) n=O/'
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with the @-sequence

n _ =

J, x0

We must now investigate how we ma X calculate with the general asymptotic

$-series. The S-sequence used, JCn _ , will be assmned to be always
t J J,x O

the same and a priori fixed so that all occurring arguments x lie in

the same interval J and all limiting processes x _ xO are referred

to the same xO.

First of all we find

Theorem i: A function F(x) defined in J

x _ x0 by at most one asymptotic @-series.

Proof: From (8) there follows immediately

can be represented for

i

Jim (x) - an$n( $m (x) - am (m = 0,i,...) (i0)
x-+Xo n=O

that is

lim F(x) _ ao

x _ x0 ¢0 (x)

lim (F(x)- ao$o(X)) i

x -+ x0 ¢I (x)

- a I

i

lim (F(x) - ao¢o(X) - al$1(x) ) ¢2 (x)
x-+x 0

- a2

(ll)

• ° ° ° ° ° ° ° ° • • ° ° * • • ° ° , ° ° • •

Only when all these boundary values exist, F(x) has, for x-_ Xo, a

C-series over J_ and this series is then uniquely determined.

Theorem 2: Assume that it is possible to represent the functions F(x)

and G(x) by the ¢-series
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F(x) "- anCn(X ) a(x) _ bn_n(X )

n=0 n=O

(12)

Then, with arbitrary constants _,p the linear combination _F(x) + pG(x)

also has, for x _ Xo, a C-series over J, namely

oo

CU_(X) + _G(x)-,, Z ( G/Ln + _bn)#n(X)

n=O

(13)

Proof: From the boundary values valid for every

m

i
lim (x) - an@n(

x -_ xo %(x)
n=O

lim (x) - bnCn( i

x -_ x0 Cm(X)n--O

m

-0

=0

follows directly by multiplication by _ and
the assertion

p and following addition

lira (x) + pG(x)) - (_an + Pbn)¢n ( 1
x _ x0 Cm,X,_

n=O

=0

The multiplication of @-series requires a further presupposition

which guarantees that the range of the functions Cn(X) is closed with

respect to the product formation. More accurately we say

Definition 3: A C-sequence _I_n} J,xo will be called multiplicative

when for every pair of subscripts k,l exactly a subscript n = n(k,Z)
exists so that in the entire J

_k(x)@Z(x) _= @n(X)

is valid.

The C-sequences (4), (5), and (6) of our three examples are evidently

all multiplicative.

o
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If an arbitrary multiplicative C-sequence is prescribed, a mul-

tiplication table for it may be set up in a known manner. For our

example (6), this table starts for instance with

1 ¢I ¢2 ¢3 ¢4

¢1 ¢3 ¢4 ¢6 ¢7

¢2 ¢4 ¢5 ¢7 ¢8

¢3 ¢6 ¢7 ¢i0 ¢ii

¢4 ¢7 ¢8 ell ¢12

¢5

In a single line or column of such a multiplication table, every

Cn-funtion may, of course, appear only once at most. However, no

statement is yet made regarding the question, how many times this Cn

for fixed n occurs in the table altogether. Such a statement is con-

tained only in the following

Auxiliary theorem I: In a multiplicative C-sequence {¢n}
J,xo

applies for the subscript n = n(k,Z) of the product

two functions ¢k and ¢_ always

there

Cn = CkCZ of any

n(k,Z)>=k + z (14)

Proof: The assertion of the theorem signifies that for fixed n the

function Cn in the multiplication table of the sequence can never

appear outside the triangle shown.

i

Cn

In order to understand this, we consider first for fixed k

¢k¢_i : Cnl CkCZ2 : ¢n2

two products
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If for them Ii < _2 applies, there must also always be nI < n2. This
follows from

@k@_l¢Z2= @n2@_l= Cnl¢Z2

thus

@_2 ¢n2

¢_i Cnl

If n2 < nI is assumed, the left side of this equation tends toward
zero for x _ x0 (x_J) because of the property (c) of the ¢-seq_ences;
the right side, in contrast, tends toward infinity, for the samereason.
The case n2 = nI likewise results in a contradiction since then the
right side is constant i.

Let us now assume- for proof of the theorem itself - that a pro-

duct ¢kCZ = Cn with k + Z > n exists. This product then lies in

the multiplication table outside the triangle drawn above. On the line

of _k there exist, up to the Cn, exactly Z-! intermediate places.

Corresponding to our auxiliary consideration, however, only the n - k - i

(< _ - i) functions Ok+l, ' , Cn-i can be at these places.

This is a contradiction; therefore, (14) must always be correct.

From the theorem just proved it follows that, for every fixed n,

the number p = p(n) of the products CkCZ = Cn can be at most n + i.

We order these p products in the sequence

_kl¢Z I' ; _¢Zp

with 0 = k I < k 2 < . < kp_ 1 < kp = n and 0 <__Z __ n - k v (v = I,

• , , p). We assume the pairs of subscripts (kv, Zv) in our prescribed

C-sequence as once for all determined from the multiplication table for

every n.

Now applies

Theorem 3: Assume it possible to represent the functions F(x) and

G(x) for x-_ xO by the C-series (12) whose $-sequence <¢n}
J,x 0

is multiplicative. Then the product F(x)G(x), too, has for x -_ x0
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a C-series over J, namely

oo

F(x)G(x) _ Z chin(X)

n=O

With the pairs of subscripts (kl, Zg,
above one has here

, (%(n),Zp(n)) introduced

cn = akbzl + ... + a%(n)bZp(n)
(15)

Proof: According to the definition of the C-series we may set for

fixed m

m

F(x) _ _. anCn(X) + e_(X)¢m(X)

n=O

m

G(x) _ _. bnCn(X) + _(x)Cm(x)

n=O

where _e(x) and _(x) are certain functions over J which, for

x -_ Xo, tend toward zero. We now multiply these two finite sums and

then order according to the Cn. This results in

M m

F(x)G(x) = _. Cn*_n(X) + Z [an_(X)+ bne-(x)_ _n_m

n=O n=O

where M > 2m is a certain fixed number and where the

Cm* evidently must be exactly equal to the corresponding

to (15). Thus the above equation becomes

(x)G(x) - CnCn( i = n
@n(X ) Cn* Cm(X )

n=O n=m+l

Co*, Cl*, .

cn according

_+

m

Z [an_(X)+ bne-(x)j Cn(X)

n=O
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that is, because of (3) and lim
x_x 0

as asserted

[(x) = lim
x_

N(x) = O, directly,

m

lim (x)a(x)- Cn_( i
X-_ X0 @m(X)

n=O

_=0

By repeated application of the theorems 2 and } there follows

immediately

Theorem 4: If each of the functions Fl(X) , F2(x) , , Fs(X ) has

for x -_ Xo, an asymptotic C-expansion whose C-sequence Cn J, xo

multiplicative, and if g(zl, . , zs) signifies any polynomial of

the variable zl, . , Zs, the function

F(x) : g(Fi(x),;2(x), , Fs(X))

also has, for x _ Xo, an asymptotic @-series over J. This series is

obtained - exactly as if all expansions were absolutely convergent - by

formal calculation and following reordering according to the functions

@n"

Beyond this, there applies now even the following:

Theorem 5: If g(z) = > _z _ is a power series with the positive

u--O

convergence radius r, and if F(x) has the asymptotic C-expansion

O0

F(X) "- f an_n(X )

n=O

(x_ xo)

where Co(X ) = 1 and laoI < r, the function

o(x) : g(F(x)) (16)

too, may be represented for x -, Xo, by an asymptotic ¢-series. This
0O

series is again calculated exactly as if the series >i an¢n(X) were

n=O

convergent in J.
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Proof: With F(x) : a0 + f(x) there is first

g(F) : g(a 0 + f) : _. _k fk

n_

(17)

if one puts for abbreviation

: ! g(k)(_)
_k k_

According to assumption, this series converges for If(x)l < r- laol,

thus because of lim f(x) --0 for all x from a half-open interval
i .

x-_ x0

j* explainedby x_J,Kx- _Oi<--8 withsufficientlysmall5 > O.
Thereby the function G(x) is with certainty defined in J*.

On the basis of theorem 4; there now follow from

f(x) _ _, an@n(X)

n=l

(18)

immediately the @-expansions

(f(x))k'_ _,, an( k) _;_n(X)

n=k

(k=2,3, ...) (19)

The coefficients an_k)f have well-determined values to be calculated

according to our rules regarding the product-formation of asymptotic

C-expansions - thus as for absolute convergence of (18). On the basis

of the auxiliary theorem i, the series (19) can of course, for (f(x)) k,

start at the earliest with the term ak(k)¢k(X ) .

The expansions (19) must now be substituted into (17) and the

obtained expression must be reordered formally - that is, again, as if

the series (19) were absolutely convergent - according to the func-

tions Cn" One then obtains an expansion

(2o)
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for which the coefficients can be calculated from

A0 = _0 }
A n = _lan + _2an (2) + ... + _nan (n) (n >__i)

It remains to be shown that (20) is the asymptotic C-series of G(x)

for x _ x0 over J* For this purpose we use for f(x), (f(x)) 2

(f(x)) m, for fixed m, the defining representations pertaining to (19)

(21)

m

(f(x))k = Z an(k)¢n(X) + e-k(X)@m(X)

n=k

with certain functions _k(X) for which lim

x_

, m) is valid. Thereby (17) becomes

G(x) = _0 + _i anCn(X) + e-l(X)¢m(X

=i

_%(x):0 (k:l,

+ _m(am(m)¢m(X) +

oo

em(X)¢m(X)) + fn+l Z _n+_f_

_t=l

thus, with consideration of (21)

m

G(x)- Z AnCn(X)= Cm(X)[_le-l(X)+ "'" + 8me-m(X)] +

n---O

Since one must have, because of (19) and (3)

Jim (f(x))n+l= 0

x _ xo ¢m(X)
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and moreover evidently

lim

x_

_iC_l(X) + ... + _mim(X) : 0

lira _. _n+_ f_ = _n+l

x-_ x0
_=i

are valid, the assertion follows.

An important special case of this theorem is obtained for

1 : _-i _, (-l)n{z-_-In (a0 { O)g(z)

a 0 + z -0 \ao)
n----O

if for z the asymptotic _-series

f(x) = F(x) - a0 _ _ an@n(X )

n=l

is substituted. Then the theorem states precisely that we may also

divide by an asymptotic C-expansion, exactly as if it were absolutely

convergent, if only the constant term is a0 { O.

Now we shall turn to the question under what conditions one can

calculate from the ¢-series of a (continuous) function F(x) a like-

wise continuous expansion for the integral

<G(x)= de (xca)

For this, it will certainly be required that - similarly to the case of

multiplication - the integrations

I_ Cn(_) d_ (xcJ) (22)

can always be carried out and do not lead out of the _-sequence used.



76

The existence of (22) is, for finite Xo, always guaranteed on the

basis of the properties of the @-functions for all xeJ and every n _ O.

For xO = ±_, in contrast, those integrals are improper and possibly in

part even divergent - as shown by the example of the normalized Co(X) _ 1.

In this case we know generally merely: when (22) converges for a sub-

script n = M, this is necessarily valid also for all n _ M. This

follows directly with the aid of the known maJorant principle of improper

integrals if one only takes into consideration that from (3) for every

n _ M dissimilar terms of the form

lCn(X)l __ CnMlCM(x)]

may be derived, with a constant CnM valid in the entire

9@

J.

In order to be able to make a rational assumption regarding the

result of the integrations (22), we consider first our three examples (4),

(5), and (6). For (4) and (6)

x n+l

fo _na_ : x (23)n+ i

is valid or, respectively,

fO x _k ink-Z{ d_ =

k-_

f (_1) u (k - 7,)(k - 7, - 1)..(k - Z - (t/ - 1)) xk+l lnk_Z_l/x (24)

_=0 (k + i)_+I

In contrast, we find for (5), for n _ 2,

oo

x _-na_ : i
(n - l)x n-I

(25)

CO O0

whereas the two int_egrals L di_ or_ _j_ _-_c_ do not exist at allo

In the two formulas (23) and (24) it is noteworthy that on the right

side only @-functions having a larger subscript than the integrand occur.

Here we tacitly made use of the fact that the Cn(X)

all different from zero and that, therefore, in the entire

always l¢n(X)l = ¢n(X)or lCn(X)l =-¢n(X).

in J are

J either
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This is a result valid generally for

finite x0

xO # +=. Let us assume, for a

and an arbitrary fixed n

j(n)
X

IXo Cn(_)d_ = [ Cnu¢_ (x)

_=n-N

(26)

with N > 0 (that is, n > 0). Then the integral may be replaced, as

is well known, by

X

IXo Cn(_)d_ = Cn(X*)(x - xo)

(27)

where

Hence follows

x Cn (_)d_

lira XQ - lim @n(X*) (x - xO) = 0

x _ x0 Cn(X) x _ x0 Cn(X)

x represents an intermediate value in the integration interval.

whereas for the right side of (26), because of (3),

j(n)

_n Cn_(x) j(n)

lim _= -N = _-_ Cn_ lim @_(x)

x Cn(X) -- x
_=n-N

-- oo

is valid. This is a contradiction as long as we do not set N = O.

xO = ±_ this result cannot be correct, of course, as shown by (25),

because then the mean-value theorem (27) loses its validity.

For

Corresponding to what has been said until now, we shall agree:

Definition 4: be a ¢-sequence with the boundary

point x0 .

ix _n (_)d_

Let {¢n}j,x 0

We denote by M the smallest subscript for which the integral

in J exists. For finite Xo, there must always be M = O;



76

for x0 : +_, let us assume the existence of a finite

¢-sequence will be called integrable when for all subscripts

the entire J

f/ Z= Cn %(x)

0 _:n-M

M. Then the

n >- M in

(28)

is valid, with finite summation limits j(n) and certain coefficients

Cn_ , uniquely determined because of the linear independence of the ¢_.

Aceordipgly, all three examples (4), (5), and (6) are, of course,

integrable _-sequences.

We can now show:

Theorem o: Let us assume that the function F(x), continuous in J,

can be represented, for x _ Xo, by the @-series

F(x) _ _ an@n(X )

n=0

(29)

with the ¢-sequence

function

¢nl J,xo assumed to be integrable.
Then the

G(x) ?x O ({)- an@n( _ d{ (30)
n:O

also defined in J and has there for x _ x0 an asymptotic C-series

G(x) _ _, AnOn(X) (31)

n--0
OO

The coefficients A n are obtained from the ¢-expansion >'. anOn(X) of

_=M

the integrand of (30) by term-by-term integration and following reordering

with respect to the @n' exactly as if (29) were absolutely convergent.

o
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Proof: The existence of the function G(x) in J follows, for

finite Xo, directly from the continuity of F(x). For x0 = ±_, in

contrast, it results, again with the aid of the maJorant principle,
from the dissimilar terms

M-I

F(x) - f anCn(X)

n=O

xsince _M(_)d _ was to converge.

Xo

We now use for (29) the representation

M-I M+m

F(x)- Z anCn(X)= f amen(X)+ e(X)am+MCm+M(X)

n--O n=M

(32)

with arbitrary but fixed m and a function !(x) defined in J

for x _ x0 tends toward zero. Thereby G(x) becomes

M+m J(n)

°Ixll- l
n=M _ =n-M

which

thus after reordering

j(M+m)

a(x) = f
n=O

<An*@n(X) + _e(_) Cm+M(_)d _

Evidently the coefficients AO* , , Am* must now be exactly equal

to the corresponding An from (31) since they can no longer be affected

by any term of the series (29) with a subscript larger than m + M.

Thereby one has

IG _ xl J(fn) 7

1 _ @n(x) 1 X

(x) - AnCn( Cm (x) An* _m(X------_ + ¢m (x) Xo
n=O n=m+l

e(_)_rn+M(_)d_

(33)
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if we nowtakeintoconsiderationthat IS( )f
lim !(_) = 0 in the integration interval of

_x 0

has a finite maximum ?(x), there follows

j(m+m

1
@m(X) - i _:m

according to (32) and

x 0 to x certainly

Hence we obtain, because of (3) and lim __(x) = 0 that the integral

x_x 0

for x -_ x0 disappears on the right side of (33). Since, moreover, the

remaining sum, on the basis of (3), also tends toward zero for x -_ Xo,

the proof of the theorem is completed.

Thus we may integrate asymptotic C-series always term by term. The

inversion, in contrast, therefore the term-by-term differentiation, does

not lead in every case to a correct result. For instance the function

F(x) = e-Xsin(e x) has, for x _, an asymptotic series of the form

o+°+ °--+ .....
x x 2

Its derivative

the approach of

such expansion.

F'(x) = -e-Xsin(e x) + cos(eX), however, oscillates for

x to infinity and permits, therefore, certainly no

¢n} J, xo

In order to arrive at a general theorem also for the differentiation

of C-series, one must always assume that not only the function F(x)

but also its derivative F'(x) has an asymptotic @-expansion. Further-

more, we shall of course have to require that all derivatives @n'(X)

exist in J and again can be represented only as linear combinations

of the functions @n(X). These relations between the @n' and the Cn

are rather fixed by definition 4: If the cJnsidered ¢-sequence

is integrable, there follows for it from (28)

J(n)

_n(x) = _ Cn_@_'(x) (n =>M,x£J) (34)

_=n-M

We shall here not investigate in more detail how far this infinite system

of equations always has an inversion by which every derivative Cn'(X)

O
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is represented as a homogeneous linear combination of a finite number

of ¢_(x). However, insofar as such a representation

Cn'(X) = _. dn_$_(x) (n _ O,xeJ) (35)

Finite number

of

exists for all n, it is, at first, certainly uniquely determined -

because of the linear independence of the ¢_(x) - and represents then

moreover, for the same reason, also a solution of (34).

Likewise, we shall here not treat the question of what subscripts

can appear in (59), but shall only agree upon the following:

} is to be calledDefinition 9: An integrable _-sequence Sn J, xo

differentiable, if, first, all its functions Cn(X) in the entire J

are continuously differentlable and, second, the infinite system of

equations (34) following from (28) has an inversion of the form (3_)

which is then, of course, uniquely determined.

Evidently our three examples (4), (_), and (6) all represent differ-

entiable S-sequences. For (4) and (9) this is perfectly clear, for (6)

it follows from

dx

Now we can show:

Theorem 7: The function F(x), continuously differentlable in J may

be represented for x _x O by the asymptotic C-expansion

oo

F(x) ~ _, anCn(X)

n=O

(36)

where the C-sequence ____¢n}J,xo is differentiable in J. If then F'(x)

also has, for x -_ Xo, an asymptotic ¢-serles in J, the latter results

from (36) by term-by-term differentiation and subsequent reordering

according to the Cn"
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Proof: Let the _-serles of F'(x) existing according to assumption
read, for instance

0o

F'(x) ~ Z bnCn(X)

n_O

(37)

We assume first that x0 is finite. Then there follows by integration

of (37) according to theorem 6

oo

F(x)=% + ~ ao + BO)+
n=l

(38)

with the coefficients Bn originating by term-by'term integration of

(37) and subsequent reordering; for simplification, we put Co(X) _ i.

However, since - because of theorem i - a function uniquely determines

its asymptotic series, there must, on the other hand,

BO = O, Bn = an (n > i)

be valid. That is, we obtain from the expansion (57) of F'(x) by

term-by-term integration and subsequent reordering precisely the C-series

(36) of F(x). On the basis of the differentiability of the C-sequence

according to definition 5, this process may be directly performed also

in the inverse direction. If, therefore, (36) is differentiated term

by term and subsequently reordered, (57) must, again, always be the

result. This precisely was the assertion.

Let now x0 be ±_. Then one has with two finite values X,XleJ

X

F(x) = cI +fx F'(_)d_
1

M-I x x I M-I

= Cl + ZbnZn=O Xl _n(_)d_ +fXl _ (_) - _'bn_n(n=O d_

or

M-I x _F
F(x) = Cl +_, bn_;n(X ) +# (_) -

Xo= +-_[_n=O

Z bnCn( d_

n=O

(39)

,-i
o
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where for abbreviation,

_X x
_n(X) = @n(_)d _

1

On the basis of the assumption regarding M, these integrals are at any

rate divergent in the limiting process xI _ x0 = +_, that is, the

values lim _n(X) do not exist. On the other hand, thereboundary

x_x 0

follows with the aid of theorem 2, because in (39) F(x) as well as

the integral on the right side possess asymptotic expansions for x _ x0
M-I

that ) bn@n(X) also may be represented by such a series for x-_ x0 •

n=0

This is a contradiction, unless b0 = b I = ... = bM_ I = O, that is,
M-I

bn_n(X) --0 is valid. Now, however, one draw a conclusionmay

n--O

again in exactly the same manner as in the case of the finite x0

whereby the theorem may be regarded as proved.
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Figure 12. - A few calculated velocity profiles for the circular cylin-
der with suction.
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